» Articles » PMID: 17981902

The Phasor Approach to Fluorescence Lifetime Imaging Analysis

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2007 Nov 6
PMID 17981902
Citations 493
Authors
Affiliations
Soon will be listed here.
Abstract

Changing the data representation from the classical time delay histogram to the phasor representation provides a global view of the fluorescence decay at each pixel of an image. In the phasor representation we can easily recognize the presence of different molecular species in a pixel or the occurrence of fluorescence resonance energy transfer. The analysis of the fluorescence lifetime imaging microscopy (FLIM) data in the phasor space is done observing clustering of pixels values in specific regions of the phasor plot rather than by fitting the fluorescence decay using exponentials. The analysis is instantaneous since is not based on calculations or nonlinear fitting. The phasor approach has the potential to simplify the way data are analyzed in FLIM, paving the way for the analysis of large data sets and, in general, making the FLIM technique accessible to the nonexpert in spectroscopy and data analysis.

Citing Articles

Applying first & second harmonic spectral phasor analysis on a single-wavelength calcium fluorophore.

Lingotti G, Jones M Biochem Biophys Rep. 2025; 41:101956.

PMID: 40065764 PMC: 11891743. DOI: 10.1016/j.bbrep.2025.101956.


Enhanced fluorescence lifetime imaging microscopy denoising via principal component analysis.

Soltani S, Paulson J, Fong E, Mumenthaler S, Armani A bioRxiv. 2025; .

PMID: 40060483 PMC: 11888454. DOI: 10.1101/2025.02.26.640419.


Proximity proteomics reveals a mechanism of fatty acid transfer at lipid droplet-mitochondria- endoplasmic reticulum contact sites.

Bezawork-Geleta A, Devereux C, Keenan S, Lou J, Cho E, Nie S Nat Commun. 2025; 16(1):2135.

PMID: 40032835 PMC: 11876333. DOI: 10.1038/s41467-025-57405-5.


GSLab: Open-Source Platform for Advanced Phasor Analysis in Fluorescence Microscopy.

Vallmitjana A, Torrado B, Durkin A, Dvornikov A, Rajil N, Ranjit S bioRxiv. 2025; .

PMID: 39990344 PMC: 11844366. DOI: 10.1101/2025.02.10.637545.


Insights into metabolic changes during epidermal differentiation as revealed by multiphoton microscopy with fluorescence lifetime imaging.

Malak M, Qian C, James J, Nair S, Grantham J, Ericson M Sci Rep. 2025; 15(1):6377.

PMID: 39984626 PMC: 11845624. DOI: 10.1038/s41598-025-90101-4.


References
1.
Peter M, Ameer-Beg S, Hughes M, Keppler M, Prag S, Marsh M . Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions. Biophys J. 2004; 88(2):1224-37. PMC: 1305125. DOI: 10.1529/biophysj.104.050153. View

2.
Clayton A, Hanley Q, Verveer P . Graphical representation and multicomponent analysis of single-frequency fluorescence lifetime imaging microscopy data. J Microsc. 2003; 213(1):1-5. DOI: 10.1111/j.1365-2818.2004.01265.x. View

3.
Redford G, Clegg R . Polar plot representation for frequency-domain analysis of fluorescence lifetimes. J Fluoresc. 2005; 15(5):805-15. DOI: 10.1007/s10895-005-2990-8. View

4.
Becker W, Bergmann A, Hink M, Konig K, Benndorf K, Biskup C . Fluorescence lifetime imaging by time-correlated single-photon counting. Microsc Res Tech. 2003; 63(1):58-66. DOI: 10.1002/jemt.10421. View

5.
Verveer P, Squire A, Bastiaens P . Global analysis of fluorescence lifetime imaging microscopy data. Biophys J. 2000; 78(4):2127-37. PMC: 1300804. DOI: 10.1016/S0006-3495(00)76759-2. View