» Articles » PMID: 23530206

Insight into the Assembly Mechanism in the Supramolecular Rings of the Sodium-driven Vibrio Flagellar Motor from the Structure of FlgT

Overview
Specialty Science
Date 2013 Mar 27
PMID 23530206
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Flagellar motility is a key factor for bacterial survival and growth in fluctuating environments. The polar flagellum of a marine bacterium, Vibrio alginolyticus, is driven by sodium ion influx and rotates approximately six times faster than the proton-driven motor of Escherichia coli. The basal body of the sodium motor has two unique ring structures, the T ring and the H ring. These structures are essential for proper assembly of the stator unit into the basal body and to stabilize the motor. FlgT, which is a flagellar protein specific for Vibrio sp., is required to form and stabilize both ring structures. Here, we report the crystal structure of FlgT at 2.0-Å resolution. FlgT is composed of three domains, the N-terminal domain (FlgT-N), the middle domain (FlgT-M), and the C-terminal domain (FlgT-C). FlgT-M is similar to the N-terminal domain of TolB, and FlgT-C resembles the N-terminal domain of FliI and the α/β subunits of F1-ATPase. To elucidate the role of each domain, we prepared domain deletion mutants of FlgT and analyzed their effects on the basal-body ring formation. The results suggest that FlgT-N contributes to the construction of the H-ring structure, and FlgT-M mediates the T-ring association on the LP ring. FlgT-C is not essential but stabilizes the H-ring structure. On the basis of these results, we propose an assembly mechanism for the basal-body rings and the stator units of the sodium-driven flagellar motor.

Citing Articles

A Helicobacter pylori flagellar motor accessory is needed to maintain the barrier function of the outer membrane during flagellar rotation.

Rosinke K, Tachiyama S, Mrasek J, Liu J, Hoover T PLoS Pathog. 2025; 21(1):e1012860.

PMID: 39792952 PMC: 11756786. DOI: 10.1371/journal.ppat.1012860.


Molecular model of a bacterial flagellar motor reveals a "parts-list" of protein adaptations to increase torque.

Drobnic T, Cohen E, Calcraft T, Alzheimer M, Froschauer K, Svensson S bioRxiv. 2024; .

PMID: 39416179 PMC: 11482838. DOI: 10.1101/2023.09.08.556779.


Viscosity-dependent determinants of impacting the velocity of flagellar motility.

Ribardo D, Johnson J, Hendrixson D mBio. 2023; 15(1):e0254423.

PMID: 38085029 PMC: 10790790. DOI: 10.1128/mbio.02544-23.


The Vibrio Polar Flagellum: Structure and Regulation.

Lloyd C, Klose K Adv Exp Med Biol. 2023; 1404:77-97.

PMID: 36792872 DOI: 10.1007/978-3-031-22997-8_5.


Structure and Assembly of the Bacterial Flagellum.

Al-Otaibi N, Bergeron J Subcell Biochem. 2022; 99:395-420.

PMID: 36151384 DOI: 10.1007/978-3-031-00793-4_13.


References
1.
Winn M, Ballard C, Cowtan K, Dodson E, Emsley P, Evans P . Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr. 2011; 67(Pt 4):235-42. PMC: 3069738. DOI: 10.1107/S0907444910045749. View

2.
Terashima H, Kojima S, Homma M . Flagellar motility in bacteria structure and function of flagellar motor. Int Rev Cell Mol Biol. 2008; 270:39-85. DOI: 10.1016/S1937-6448(08)01402-0. View

3.
Terashima H, Fukuoka H, Yakushi T, Kojima S, Homma M . The Vibrio motor proteins, MotX and MotY, are associated with the basal body of Na-driven flagella and required for stator formation. Mol Microbiol. 2006; 62(4):1170-80. DOI: 10.1111/j.1365-2958.2006.05435.x. View

4.
Martinez R, Dharmasena M, Kirn T, Taylor R . Characterization of two outer membrane proteins, FlgO and FlgP, that influence vibrio cholerae motility. J Bacteriol. 2009; 191(18):5669-79. PMC: 2737956. DOI: 10.1128/JB.00632-09. View

5.
Goemaere E, Cascales E, Lloubes R . Mutational analyses define helix organization and key residues of a bacterial membrane energy-transducing complex. J Mol Biol. 2007; 366(5):1424-36. DOI: 10.1016/j.jmb.2006.12.020. View