» Articles » PMID: 23439161

Fluorescence Intensity- and Lifetime-based Glucose Sensing Using Glucose/galactose-binding Protein

Overview
Specialty Endocrinology
Date 2013 Feb 27
PMID 23439161
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

We review progress in our laboratories toward developing in vivo glucose sensors for diabetes that are based on fluorescence labeling of glucose/galactose-binding protein. Measurement strategies have included both monitoring glucose-induced changes in fluorescence resonance energy transfer and labeling with the environmentally sensitive fluorophore, badan. Measuring fluorescence lifetime rather than intensity has particular potential advantages for in vivo sensing. A prototype fiber-optic-based glucose sensor using this technology is being tested.

Citing Articles

Development of a Noninvasive Blood Glucose Monitoring System Prototype: Pilot Study.

Valero M, Pola P, Falaiye O, Ingram K, Zhao L, Shahriar H JMIR Form Res. 2022; 6(8):e38664.

PMID: 36018623 PMC: 9463623. DOI: 10.2196/38664.


Photophysical Properties of BADAN Revealed in the Study of GGBP Structural Transitions.

Fonin A, Silonov S, Antifeeva I, Stepanenko O, Stepanenko O, Fefilova A Int J Mol Sci. 2021; 22(20).

PMID: 34681772 PMC: 8540541. DOI: 10.3390/ijms222011113.


Polymer Optical Fiber Tip Mass Production Etch Mechanism to Achieve CPC Shape for Improved Biosensor Performance.

Hassan H, Bang O, Janting J Sensors (Basel). 2019; 19(2).

PMID: 30642022 PMC: 6359282. DOI: 10.3390/s19020285.


High-resolution in vivo optical imaging of stroke injury and repair.

Sakadzic S, Lee J, Boas D, Ayata C Brain Res. 2015; 1623:174-92.

PMID: 25960347 PMC: 4569527. DOI: 10.1016/j.brainres.2015.04.044.


Advancing the development of glycated protein biosensing technology: next-generation sensing molecules.

Kameya M, Sakaguchi-Mikami A, Ferri S, Tsugawa W, Sode K J Diabetes Sci Technol. 2015; 9(2):183-91.

PMID: 25627465 PMC: 4604589. DOI: 10.1177/1932296814565784.


References
1.
Pickup J, Hussain F, Evans N, Rolinski O, Birch D . Fluorescence-based glucose sensors. Biosens Bioelectron. 2005; 20(12):2555-65. DOI: 10.1016/j.bios.2004.10.002. View

2.
Sackett D, Wolff J . Nile red as a polarity-sensitive fluorescent probe of hydrophobic protein surfaces. Anal Biochem. 1987; 167(2):228-34. DOI: 10.1016/0003-2697(87)90157-6. View

3.
Ye K, Schultz J . Genetic engineering of an allosterically based glucose indicator protein for continuous glucose monitoring by fluorescence resonance energy transfer. Anal Chem. 2003; 75(14):3451-9. DOI: 10.1021/ac034022q. View

4.
Yoon H, Ahn J, Barone P, Yum K, Sharma R, Boghossian A . Periplasmic binding proteins as optical modulators of single-walled carbon nanotube fluorescence: amplifying a nanoscale actuator. Angew Chem Int Ed Engl. 2011; 50(8):1828-31. DOI: 10.1002/anie.201006167. View

5.
Meadows D, Schultz J . Fiber-optic biosensors based on fluorescence energy transfer. Talanta. 1988; 35(2):145-50. DOI: 10.1016/0039-9140(88)80053-5. View