» Articles » PMID: 22110874

Engineering Periplasmic Ligand Binding Proteins As Glucose Nanosensors

Overview
Journal Nano Rev
Specialty Biotechnology
Date 2011 Nov 24
PMID 22110874
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Diabetes affects over 100 million people worldwide. Better methods for monitoring blood glucose levels are needed for improving disease management. Several labs have previously made glucose nanosensors by modifying members of the periplasmic ligand binding protein superfamily. This minireview summarizes recent developments in constructing new versions of these proteins that are responsive within the physiological range of blood glucose levels, employ new reporter groups, and/or are more robust. These experiments are important steps in the development of novel proteins that have the characteristics needed for an implantable glucose nanosensor for diabetes management: specificity for glucose, rapid response, sensitivity within the physiological range of glucose concentrations, reproducibility, and robustness.

Citing Articles

Retracing the evolution of a modern periplasmic binding protein.

Michel F, Romero-Romero S, Hocker B Protein Sci. 2023; 32(11):e4793.

PMID: 37788980 PMC: 10601554. DOI: 10.1002/pro.4793.


Nanotheranostics: application of nanosensors in diabetes management.

Pathak K, Saikia R, Sarma H, Pathak M, Das R, Gogoi U J Diabetes Metab Disord. 2023; 22(1):119-133.

PMID: 37255773 PMC: 10225368. DOI: 10.1007/s40200-023-01206-4.


Theranostic Advances of Bionanomaterials against Gestational Diabetes Mellitus: A Preliminary Review.

Barani M, Sargazi S, Mohammadzadeh V, Rahdar A, Pandey S, Jha N J Funct Biomater. 2021; 12(4).

PMID: 34698244 PMC: 8544389. DOI: 10.3390/jfb12040054.


The 40-Year Mystery of Insect Odorant-Binding Proteins.

Rihani K, Ferveur J, Briand L Biomolecules. 2021; 11(4).

PMID: 33808208 PMC: 8067015. DOI: 10.3390/biom11040509.


A FRET-based biosensor for the quantification of glucose in culture supernatants of mL scale microbial cultivations.

Otten J, Tenhaef N, Jansen R, Dobber J, Jungbluth L, Noack S Microb Cell Fact. 2019; 18(1):143.

PMID: 31434564 PMC: 6704555. DOI: 10.1186/s12934-019-1193-y.


References
1.
Ye K, Schultz J . Genetic engineering of an allosterically based glucose indicator protein for continuous glucose monitoring by fluorescence resonance energy transfer. Anal Chem. 2003; 75(14):3451-9. DOI: 10.1021/ac034022q. View

2.
Moschou E, Sharma B, Deo S, Daunert S . Fluorescence glucose detection: advances toward the ideal in vivo biosensor. J Fluoresc. 2004; 14(5):535-47. DOI: 10.1023/b:jofl.0000039341.64999.83. View

3.
Amiss T, Sherman D, Nycz C, Andaluz S, Pitner J . Engineering and rapid selection of a low-affinity glucose/galactose-binding protein for a glucose biosensor. Protein Sci. 2007; 16(11):2350-9. PMC: 2211708. DOI: 10.1110/ps.073119507. View

4.
Taneoka A, Sakaguchi-Mikami A, Yamazaki T, Tsugawa W, Sode K . The construction of a glucose-sensing luciferase. Biosens Bioelectron. 2009; 25(1):76-81. DOI: 10.1016/j.bios.2009.06.004. View

5.
Khan F, Gnudi L, Pickup J . Fluorescence-based sensing of glucose using engineered glucose/galactose-binding protein: a comparison of fluorescence resonance energy transfer and environmentally sensitive dye labelling strategies. Biochem Biophys Res Commun. 2007; 365(1):102-6. DOI: 10.1016/j.bbrc.2007.10.129. View