6.
Einbeck J, Ainsbury E, Sales R, Barnard S, Kaestle F, Higueras M
. A statistical framework for radiation dose estimation with uncertainty quantification from the γ-H2AX assay. PLoS One. 2018; 13(11):e0207464.
PMC: 6261578.
DOI: 10.1371/journal.pone.0207464.
View
7.
Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmuller U
. Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics. 2009; 25(15):1923-9.
DOI: 10.1093/bioinformatics/btp358.
View
8.
Zeng H, Gifford D
. Quantification of Uncertainty in Peptide-MHC Binding Prediction Improves High-Affinity Peptide Selection for Therapeutic Design. Cell Syst. 2019; 9(2):159-166.e3.
PMC: 6715517.
DOI: 10.1016/j.cels.2019.05.004.
View
9.
Chen W, Niepel M, Sorger P
. Classic and contemporary approaches to modeling biochemical reactions. Genes Dev. 2010; 24(17):1861-75.
PMC: 2932968.
DOI: 10.1101/gad.1945410.
View
10.
Bandara S, Schloder J, Eils R, Bock H, Meyer T
. Optimal experimental design for parameter estimation of a cell signaling model. PLoS Comput Biol. 2009; 5(11):e1000558.
PMC: 2775273.
DOI: 10.1371/journal.pcbi.1000558.
View
11.
Raue A, Becker V, Klingmuller U, Timmer J
. Identifiability and observability analysis for experimental design in nonlinear dynamical models. Chaos. 2011; 20(4):045105.
DOI: 10.1063/1.3528102.
View
12.
Sabe V, Ntombela T, Jhamba L, Maguire G, Govender T, Naicker T
. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. Eur J Med Chem. 2021; 224:113705.
DOI: 10.1016/j.ejmech.2021.113705.
View
13.
Eriksson O, Jauhiainen A, Maad Sasane S, Kramer A, Nair A, Sartorius C
. Uncertainty quantification, propagation and characterization by Bayesian analysis combined with global sensitivity analysis applied to dynamical intracellular pathway models. Bioinformatics. 2018; 35(2):284-292.
PMC: 6330009.
DOI: 10.1093/bioinformatics/bty607.
View
14.
Wisniewski J, Hein M, Cox J, Mann M
. A "proteomic ruler" for protein copy number and concentration estimation without spike-in standards. Mol Cell Proteomics. 2014; 13(12):3497-506.
PMC: 4256500.
DOI: 10.1074/mcp.M113.037309.
View
15.
Dehghannasiri R, Yoon B, Dougherty E
. Optimal Experimental Design for Gene Regulatory Networks in the Presence of Uncertainty. IEEE/ACM Trans Comput Biol Bioinform. 2015; 12(4):938-50.
DOI: 10.1109/TCBB.2014.2377733.
View
16.
Chis O, Villaverde A, Banga J, Balsa-Canto E
. On the relationship between sloppiness and identifiability. Math Biosci. 2016; 282:147-161.
DOI: 10.1016/j.mbs.2016.10.009.
View
17.
Duan L, Young A, Nishimura A, Dunson D
. Bayesian constraint relaxation. Biometrika. 2020; 107(1):191-204.
PMC: 7017863.
DOI: 10.1093/biomet/asz069.
View
18.
Mitra E, Hlavacek W
. Parameter Estimation and Uncertainty Quantification for Systems Biology Models. Curr Opin Syst Biol. 2020; 18:9-18.
PMC: 7384601.
DOI: 10.1016/j.coisb.2019.10.006.
View
19.
Faeder J, Blinov M, Hlavacek W
. Rule-based modeling of biochemical systems with BioNetGen. Methods Mol Biol. 2009; 500:113-67.
DOI: 10.1007/978-1-59745-525-1_5.
View
20.
Braakman S, Pathmanathan P, Moore H
. Evaluation framework for systems models. CPT Pharmacometrics Syst Pharmacol. 2021; 11(3):264-289.
PMC: 8923730.
DOI: 10.1002/psp4.12755.
View