» Articles » PMID: 23343213

Microfluidic Screening of Electrophoretic Mobility Shifts Elucidates Riboswitch Binding Function

Overview
Journal J Am Chem Soc
Specialty Chemistry
Date 2013 Jan 25
PMID 23343213
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Riboswitches are RNA sensors that change conformation upon binding small molecule metabolites, in turn modulating gene expression. Our understanding of riboswitch regulatory function would be accelerated by a high-throughput, quantitative screening tool capable of measuring riboswitch-ligand binding. We introduce a microfluidic mobility shift assay that enables precise and rapid quantitation of ligand binding and subsequent riboswitch conformational change. In 0.3% of the time required for benchtop assays (3.2 versus 1020 min), we screen and validate five candidate SAM-I riboswitches isolated from thermophilic and cryophilic bacteria. The format offers enhanced resolution of conformational change compared to slab gel formats, quantitation, and repeatability for statistical assessment of small mobility shifts, low reagent consumption, and riboswitch characterization without modification of the aptamer structure. Appreciable analytical sensitivity coupled with high-resolution separation performance allows quantitation of equilibrium dissociation constants (K(d)) for both rapidly and slowly interconverting riboswitch-ligand pairs as validated through experiments and modeling. Conformational change, triplicate mobility shift measurements, and K(d) are reported for both a known and a candidate SAM-I riboswitch with comparison to in-line probing assay results. The microfluidic mobility shift assay establishes a scalable format for the study of riboswitch-ligand binding that will advance the discovery and selection of novel riboswitches and the development of antibiotics to target bacterial riboswitches.

Citing Articles

A comprehensive review on advancements in tissue engineering and microfluidics toward kidney-on-chip.

Sateesh J, Guha K, Dutta A, Sengupta P, Yalamanchili D, Donepudi N Biomicrofluidics. 2022; 16(4):041501.

PMID: 35992641 PMC: 9385224. DOI: 10.1063/5.0087852.


Imaging Intracellular -Adenosyl Methionine Dynamics in Live Mammalian Cells with a Genetically Encoded Red Fluorescent RNA-Based Sensor.

Li X, Mo L, Litke J, Dey S, Suter S, Jaffrey S J Am Chem Soc. 2020; 142(33):14117-14124.

PMID: 32698574 PMC: 8158784. DOI: 10.1021/jacs.0c02931.


Determination of equilibrium dissociation constants for recombinant antibodies by high-throughput affinity electrophoresis.

Pan Y, Sackmann E, Wypisniak K, Hornsby M, Datwani S, Herr A Sci Rep. 2016; 6:39774.

PMID: 28008969 PMC: 5180089. DOI: 10.1038/srep39774.


Transient Induced Molecular Electronic Spectroscopy (TIMES) for study of protein-ligand interactions.

Zhang T, Ku T, Han Y, Subramanian R, Niaz I, Luo H Sci Rep. 2016; 6:35570.

PMID: 27759045 PMC: 5069662. DOI: 10.1038/srep35570.


Opportunities in the design and application of RNA for gene expression control.

McKeague M, Wong R, Smolke C Nucleic Acids Res. 2016; 44(7):2987-99.

PMID: 26969733 PMC: 4838379. DOI: 10.1093/nar/gkw151.


References
1.
Colyer C, Mangru S, Harrison D . Microchip-based capillary electrophoresis of human serum proteins. J Chromatogr A. 1997; 781(1-2):271-6. DOI: 10.1016/s0021-9673(97)00502-5. View

2.
Ying B, Fourmy D, Yoshizawa S . Substitution of the use of radioactivity by fluorescence for biochemical studies of RNA. RNA. 2007; 13(11):2042-50. PMC: 2040085. DOI: 10.1261/rna.637907. View

3.
Nagrath S, Sequist L, Maheswaran S, Bell D, Irimia D, Ulkus L . Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007; 450(7173):1235-9. PMC: 3090667. DOI: 10.1038/nature06385. View

4.
Breaker R . Prospects for riboswitch discovery and analysis. Mol Cell. 2011; 43(6):867-79. PMC: 4140403. DOI: 10.1016/j.molcel.2011.08.024. View

5.
Dixon N, Duncan J, Geerlings T, Dunstan M, McCarthy J, Leys D . Reengineering orthogonally selective riboswitches. Proc Natl Acad Sci U S A. 2010; 107(7):2830-5. PMC: 2840279. DOI: 10.1073/pnas.0911209107. View