» Articles » PMID: 23288364

Histone Chaperones in Nucleosome Assembly and Human Disease

Overview
Date 2013 Jan 5
PMID 23288364
Citations 218
Authors
Affiliations
Soon will be listed here.
Abstract

Nucleosome assembly following DNA replication, DNA repair and gene transcription is critical for the maintenance of genome stability and epigenetic information. Nucleosomes are assembled by replication-coupled or replication-independent pathways with the aid of histone chaperone proteins. How these different nucleosome assembly pathways are regulated remains relatively unclear. Recent studies have provided insight into the mechanisms and the roles of histone chaperones in regulating nucleosome assembly. Alterations or mutations in factors involved in nucleosome assembly have also been implicated in cancer and other human diseases. This review highlights the recent progress and outlines future challenges in the field.

Citing Articles

Mammalian piRNA target prediction using a hierarchical attention model.

Zhang T, Chen L, Zhu H, Wong G BMC Bioinformatics. 2025; 26(1):50.

PMID: 39934678 PMC: 11817350. DOI: 10.1186/s12859-025-06068-6.


Epigenomic heterogeneity as a source of tumour evolution.

Laisne M, Lupien M, Vallot C Nat Rev Cancer. 2024; 25(1):7-26.

PMID: 39414948 DOI: 10.1038/s41568-024-00757-9.


The Function of H2A Histone Variants and Their Roles in Diseases.

Yin X, Zeng D, Liao Y, Tang C, Li Y Biomolecules. 2024; 14(8).

PMID: 39199381 PMC: 11352661. DOI: 10.3390/biom14080993.


Chromatin assembly factor 1 suppresses epigenetic reprogramming toward adaptive drug resistance.

Wang Z, Wu R, Nie Q, Bouchonville K, Diasio R, Offer S J Natl Cancer Cent. 2024; 1(1):15-22.

PMID: 39036786 PMC: 11256593. DOI: 10.1016/j.jncc.2020.12.003.


Structural Basis for the Interaction Between Yeast Chromatin Assembly Factor 1 and Proliferating Cell Nuclear Antigen.

Orndorff K, Veltri E, Hoitsma N, Williams I, Hall I, Jaworski G J Mol Biol. 2024; 436(16):168695.

PMID: 38969056 PMC: 11305522. DOI: 10.1016/j.jmb.2024.168695.


References
1.
Zhang R, Poustovoitov M, Ye X, Santos H, Chen W, Daganzo S . Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell. 2004; 8(1):19-30. DOI: 10.1016/j.devcel.2004.10.019. View

2.
Sobel R, Cook R, Perry C, Annunziato A, Allis C . Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc Natl Acad Sci U S A. 1995; 92(4):1237-41. PMC: 42674. DOI: 10.1073/pnas.92.4.1237. View

3.
Xin H, Takahata S, Blanksma M, McCullough L, Stillman D, Formosa T . yFACT induces global accessibility of nucleosomal DNA without H2A-H2B displacement. Mol Cell. 2009; 35(3):365-76. PMC: 2748400. DOI: 10.1016/j.molcel.2009.06.024. View

4.
Masumoto H, Hawke D, Kobayashi R, Verreault A . A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature. 2005; 436(7048):294-8. DOI: 10.1038/nature03714. View

5.
Mosammaparast N, Ewart C, Pemberton L . A role for nucleosome assembly protein 1 in the nuclear transport of histones H2A and H2B. EMBO J. 2002; 21(23):6527-38. PMC: 136951. DOI: 10.1093/emboj/cdf647. View