» Articles » PMID: 23223234

The Fidelity of Transcription: RPB1 (RPO21) Mutations That Increase Transcriptional Slippage in S. Cerevisiae

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2012 Dec 11
PMID 23223234
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

The fidelity of RNA synthesis depends on both accurate template-mediated nucleotide selection and proper maintenance of register between template and RNA. Loss of register, or transcriptional slippage, is particularly likely on homopolymeric runs in the template. Transcriptional slippage can alter the coding capacity of mRNAs and is used as a regulatory mechanism. Here we describe mutations in the largest subunit of Saccharomyces cerevisiae RNA polymerase II that substantially increase the level of transcriptional slippage. Alleles of RPB1 (RPO21) with elevated slippage rates were identified among 6-azauracil-sensitive mutants and were also isolated using a slippage-dependent reporter gene. Biochemical characterization of polymerase II isolated from these mutants confirms elevated levels of transcriptional slippage.

Citing Articles

Structural basis of transcription: RNA polymerase II substrate binding and metal coordination using a free-electron laser.

Lin G, Barnes C, Weiss S, Dutagaci B, Qiu C, Feig M Proc Natl Acad Sci U S A. 2024; 121(36):e2318527121.

PMID: 39190355 PMC: 11388330. DOI: 10.1073/pnas.2318527121.


Expression of human RECQL5 in Saccharomyces cerevisiae causes transcription defects and transcription-associated genome instability.

Lafuente-Barquero J, Svejstrup J, Luna R, Aguilera A Mol Genet Genomics. 2024; 299(1):59.

PMID: 38796829 PMC: 11128410. DOI: 10.1007/s00438-024-02152-3.


Evolutionary conservation of the fidelity of transcription.

Chung C, Verheijen B, Navapanich Z, McGann E, Shemtov S, Lai G Nat Commun. 2023; 14(1):1547.

PMID: 36941254 PMC: 10027832. DOI: 10.1038/s41467-023-36525-w.


The fidelity of transcription in human cells.

Chung C, Verheijen B, Zhang X, Huang B, Coakley A, McGann E Proc Natl Acad Sci U S A. 2023; 120(5):e2210038120.

PMID: 36696440 PMC: 9945944. DOI: 10.1073/pnas.2210038120.


Adaptive laboratory evolution in S. cerevisiae highlights role of transcription factors in fungal xenobiotic resistance.

Ottilie S, Luth M, Hellemann E, Goldgof G, Vigil E, Kumar P Commun Biol. 2022; 5(1):128.

PMID: 35149760 PMC: 8837787. DOI: 10.1038/s42003-022-03076-7.


References
1.
Koyama H, Ito T, Nakanishi T, Kawamura N, Sekimizu K . Transcription elongation factor S-II maintains transcriptional fidelity and confers oxidative stress resistance. Genes Cells. 2003; 8(10):779-88. DOI: 10.1046/j.1365-2443.2003.00677.x. View

2.
Liu X, Martin C . Transcription elongation complex stability: the topological lock. J Biol Chem. 2009; 284(52):36262-36270. PMC: 2794742. DOI: 10.1074/jbc.M109.056820. View

3.
Shaw R, Bonawitz N, Reines D . Use of an in vivo reporter assay to test for transcriptional and translational fidelity in yeast. J Biol Chem. 2002; 277(27):24420-6. PMC: 3371612. DOI: 10.1074/jbc.M202059200. View

4.
Boeke J, Lacroute F, Fink G . A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet. 1984; 197(2):345-6. DOI: 10.1007/BF00330984. View

5.
Wagner L, Weiss R, Driscoll R, Dunn D, GESTELAND R . Transcriptional slippage occurs during elongation at runs of adenine or thymine in Escherichia coli. Nucleic Acids Res. 1990; 18(12):3529-35. PMC: 331007. DOI: 10.1093/nar/18.12.3529. View