» Articles » PMID: 18538654

Transient Reversal of RNA Polymerase II Active Site Closing Controls Fidelity of Transcription Elongation

Overview
Journal Mol Cell
Publisher Cell Press
Specialty Cell Biology
Date 2008 Jun 10
PMID 18538654
Citations 117
Authors
Affiliations
Soon will be listed here.
Abstract

To study fidelity of RNA polymerase II (Pol II), we analyzed properties of the 6-azauracil-sensitive and TFIIS-dependent E1103G mutant of rbp1 (rpo21), the gene encoding the catalytic subunit of Pol II in Saccharomyces cerevisiae. Using an in vivo retrotransposition-based transcription fidelity assay, we observed that rpb1-E1103G causes a 3-fold increase in transcription errors. This mutant showed a 10-fold decrease in fidelity of transcription elongation in vitro. The mutation does not appear to significantly affect translocation state equilibrium of Pol II in a stalled elongation complex. Primarily, it promotes NTP sequestration in the polymerase active center. Furthermore, pre-steady-state analyses revealed that the E1103G mutation shifted the equilibrium between the closed and the open active center conformations toward the closed form. Thus, open conformation of the active center emerges as an intermediate essential for preincorporation fidelity control. Similar mechanisms may control fidelity of DNA-dependent DNA polymerases and RNA-dependent RNA polymerases.

Citing Articles

Higher-order epistasis within Pol II trigger loop haplotypes.

Duan B, Qiu C, Lockless S, Sze S, Kaplan C Genetics. 2024; .

PMID: 39446980 PMC: 11631520. DOI: 10.1093/genetics/iyae172.


RNA Polymerase II Activity Control of Gene Expression and Involvement in Disease.

Kuldell J, Kaplan C J Mol Biol. 2024; 437(1):168770.

PMID: 39214283 PMC: 11781076. DOI: 10.1016/j.jmb.2024.168770.


Structural basis of transcription: RNA polymerase II substrate binding and metal coordination using a free-electron laser.

Lin G, Barnes C, Weiss S, Dutagaci B, Qiu C, Feig M Proc Natl Acad Sci U S A. 2024; 121(36):e2318527121.

PMID: 39190355 PMC: 11388330. DOI: 10.1073/pnas.2318527121.


Reversible Kinetics in Multi-nucleotide Addition Catalyzed by S. cerevisiae RNA polymerase II Reveal Slow Pyrophosphate Release.

Fuller K, Jacobs R, Schneider D, Lucius A J Mol Biol. 2024; 436(12):168606.

PMID: 38729258 PMC: 11162919. DOI: 10.1016/j.jmb.2024.168606.


RNA polymerase SI3 domain modulates global transcriptional pausing and pause-site fluctuations.

Bao Y, Cao X, Landick R Nucleic Acids Res. 2024; 52(8):4556-4574.

PMID: 38554114 PMC: 11077087. DOI: 10.1093/nar/gkae209.


References
1.
EICHHORN G, Chuknyisky P, Butzow J, Beal R, Garland C, Janzen C . A structural model for fidelity in transcription. Proc Natl Acad Sci U S A. 1994; 91(16):7613-7. PMC: 44452. DOI: 10.1073/pnas.91.16.7613. View

2.
Kamzolova S, Ozoline O . An RNA polymerase with reduced fidelity of RNA synthesis from an E. coli mutant suggests the existence of a correction system of non-complementary nucleotide incorporation during transcription. Mol Biol Rep. 1982; 8(3):133-5. DOI: 10.1007/BF00777239. View

3.
Shaw R, Bonawitz N, Reines D . Use of an in vivo reporter assay to test for transcriptional and translational fidelity in yeast. J Biol Chem. 2002; 277(27):24420-6. PMC: 3371612. DOI: 10.1074/jbc.M202059200. View

4.
Kettenberger H, Armache K, Cramer P . Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol Cell. 2004; 16(6):955-65. DOI: 10.1016/j.molcel.2004.11.040. View

5.
Tuske S, Sarafianos S, Wang X, Hudson B, Sineva E, Mukhopadhyay J . Inhibition of bacterial RNA polymerase by streptolydigin: stabilization of a straight-bridge-helix active-center conformation. Cell. 2005; 122(4):541-52. PMC: 2754413. DOI: 10.1016/j.cell.2005.07.017. View