» Articles » PMID: 23193261

HAMAP in 2013, New Developments in the Protein Family Classification and Annotation System

Abstract

HAMAP (High-quality Automated and Manual Annotation of Proteins-available at http://hamap.expasy.org/) is a system for the classification and annotation of protein sequences. It consists of a collection of manually curated family profiles for protein classification, and associated annotation rules that specify annotations that apply to family members. HAMAP was originally developed to support the manual curation of UniProtKB/Swiss-Prot records describing microbial proteins. Here we describe new developments in HAMAP, including the extension of HAMAP to eukaryotic proteins, the use of HAMAP in the automated annotation of UniProtKB/TrEMBL, providing high-quality annotation for millions of protein sequences, and the future integration of HAMAP into a unified system for UniProtKB annotation, UniRule. HAMAP is continuously updated by expert curators with new family profiles and annotation rules as new protein families are characterized. The collection of HAMAP family classification profiles and annotation rules can be browsed and viewed on the HAMAP website, which also provides an interface to scan user sequences against HAMAP profiles.

Citing Articles

An improved reference of the grapevine genome reasserts the origin of the PN40024 highly homozygous genotype.

Velt A, Frommer B, Blanc S, Holtgrawe D, Duchene E, Dumas V G3 (Bethesda). 2023; 13(5).

PMID: 36966465 PMC: 10151409. DOI: 10.1093/g3journal/jkad067.


Metagenome-assembled genomes of phytoplankton microbiomes from the Arctic and Atlantic Oceans.

Duncan A, Barry K, Daum C, Eloe-Fadrosh E, Roux S, Schmidt K Microbiome. 2022; 10(1):67.

PMID: 35484634 PMC: 9047304. DOI: 10.1186/s40168-022-01254-7.


An improved high-quality genome assembly and annotation of Tibetan hulless barley.

Zeng X, Xu T, Ling Z, Wang Y, Li X, Xu S Sci Data. 2020; 7(1):139.

PMID: 32385314 PMC: 7210891. DOI: 10.1038/s41597-020-0480-0.


Isolates from Colonic Spirochetosis in Humans Show High Genomic Divergence and Potential Pathogenic Features but Are Not Detected Using Standard Primers for the Human Microbiota.

Thorell K, Inganas L, Backhans A, Agreus L, Ost A, Walker M J Bacteriol. 2019; 201(21).

PMID: 31405919 PMC: 6779451. DOI: 10.1128/JB.00272-19.


Draft genome sequence of subsp. strain Fito_F321, an endophyte microorganism from with biocontrol potential.

Pinto C, Sousa S, Froufe H, Egas C, Clement C, Fontaine F Stand Genomic Sci. 2018; 13:30.

PMID: 30410642 PMC: 6211603. DOI: 10.1186/s40793-018-0327-x.


References
1.
Selengut J, Haft D, Davidsen T, Ganapathy A, Gwinn-Giglio M, Nelson W . TIGRFAMs and Genome Properties: tools for the assignment of molecular function and biological process in prokaryotic genomes. Nucleic Acids Res. 2006; 35(Database issue):D260-4. PMC: 1781115. DOI: 10.1093/nar/gkl1043. View

2.
Karp P, Latendresse M, Caspi R . The pathway tools pathway prediction algorithm. Stand Genomic Sci. 2012; 5(3):424-9. PMC: 3368424. DOI: 10.4056/sigs.1794338. View

3.
Biswas M, ORourke J, Camon E, Fraser G, Kanapin A, Karavidopoulou Y . Applications of InterPro in protein annotation and genome analysis. Brief Bioinform. 2002; 3(3):285-95. DOI: 10.1093/bib/3.3.285. View

4.
Gattiker A, Michoud K, Rivoire C, Auchincloss A, Coudert E, Lima T . Automated annotation of microbial proteomes in SWISS-PROT. Comput Biol Chem. 2003; 27(1):49-58. DOI: 10.1016/s1476-9271(02)00094-4. View

5.
Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M . KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2011; 40(Database issue):D109-14. PMC: 3245020. DOI: 10.1093/nar/gkr988. View