» Articles » PMID: 23176322

Normalization and Missing Value Imputation for Label-free LC-MS Analysis

Overview
Publisher Biomed Central
Specialty Biology
Date 2012 Nov 27
PMID 23176322
Citations 142
Authors
Affiliations
Soon will be listed here.
Abstract

Shotgun proteomic data are affected by a variety of known and unknown systematic biases as well as high proportions of missing values. Typically, normalization is performed in an attempt to remove systematic biases from the data before statistical inference, sometimes followed by missing value imputation to obtain a complete matrix of intensities. Here we discuss several approaches to normalization and dealing with missing values, some initially developed for microarray data and some developed specifically for mass spectrometry-based data.

Citing Articles

Comprehensive Evaluation of Advanced Imputation Methods for Proteomic Data Acquired via the Label-Free Approach.

Wryk G, Gawor A, Bulska E Int J Mol Sci. 2025; 25(24.

PMID: 39769253 PMC: 11728106. DOI: 10.3390/ijms252413491.


Kinetic principles of chemical cross-link formation for protein-protein interactions.

Kammer K, Eisgruber T, Heid P, Pellarin R, Stengel F Proc Natl Acad Sci U S A. 2024; 121(51):e2402040121.

PMID: 39652756 PMC: 11665911. DOI: 10.1073/pnas.2402040121.


The early transition to cold-induced browning in mouse subcutaneous white adipose tissue (scWAT) involves proteins related to nerve remodeling, cytoskeleton, mitochondria, and immune cells.

Blaszkiewicz M, Johnson C, Willows J, Gardner M, Taplin D, Freitas M Adipocyte. 2024; 13(1):2428938.

PMID: 39641403 PMC: 11633174. DOI: 10.1080/21623945.2024.2428938.


PEPerMINT: peptide abundance imputation in mass spectrometry-based proteomics using graph neural networks.

Pietz T, Gupta S, Schlaffner C, Ahmed S, Steen H, Renard B Bioinformatics. 2024; 40(Suppl 2):ii70-ii78.

PMID: 39230699 PMC: 11373339. DOI: 10.1093/bioinformatics/btae389.


Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry.

Jiang Y, Rex D, Schuster D, Neely B, Rosano G, Volkmar N ACS Meas Sci Au. 2024; 4(4):338-417.

PMID: 39193565 PMC: 11348894. DOI: 10.1021/acsmeasuresciau.3c00068.


References
1.
Dabney A, Storey J . A new approach to intensity-dependent normalization of two-channel microarrays. Biostatistics. 2006; 8(1):128-39. DOI: 10.1093/biostatistics/kxj038. View

2.
Petyuk V, Jaitly N, Moore R, Ding J, Metz T, Tang K . Elimination of systematic mass measurement errors in liquid chromatography-mass spectrometry based proteomics using regression models and a priori partial knowledge of the sample content. Anal Chem. 2008; 80(3):693-706. PMC: 2518823. DOI: 10.1021/ac701863d. View

3.
Yang Y, Dudoit S, Luu P, Lin D, Peng V, Ngai J . Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 2002; 30(4):e15. PMC: 100354. DOI: 10.1093/nar/30.4.e15. View

4.
Karpievitch Y, Stanley J, Taverner T, Huang J, Adkins J, Ansong C . A statistical framework for protein quantitation in bottom-up MS-based proteomics. Bioinformatics. 2009; 25(16):2028-34. PMC: 2723007. DOI: 10.1093/bioinformatics/btp362. View

5.
Dabney A, Storey J . A reanalysis of a published Affymetrix GeneChip control dataset. Genome Biol. 2006; 7(3):401. PMC: 1557755. DOI: 10.1186/gb-2006-7-3-401. View