» Articles » PMID: 18578521

A Statistical Model for ITRAQ Data Analysis

Overview
Journal J Proteome Res
Specialty Biochemistry
Date 2008 Jun 27
PMID 18578521
Citations 51
Authors
Affiliations
Soon will be listed here.
Abstract

We describe biological and experimental factors that induce variability in reporter ion peak areas obtained from iTRAQ experiments. We demonstrate how these factors can be incorporated into a statistical model for use in evaluating differential protein expression and highlight the benefits of using analysis of variance to quantify fold change. We demonstrate the model's utility based on an analysis of iTRAQ data derived from a spike-in study.

Citing Articles

Serum/Plasma Proteome in Non-Malignant Liver Disease.

Fu L, Guldiken N, Remih K, Karl A, Preisinger C, Strnad P Int J Mol Sci. 2024; 25(4).

PMID: 38396688 PMC: 10889128. DOI: 10.3390/ijms25042008.


Bioinformatic Analysis of Temporal and Spatial Proteome Alternations During Infections.

Rahmatbakhsh M, Gagarinova A, Babu M Front Genet. 2021; 12:667936.

PMID: 34276775 PMC: 8283032. DOI: 10.3389/fgene.2021.667936.


RobNorm: model-based robust normalization method for labeled quantitative mass spectrometry proteomics data.

Wang M, Jiang L, Jian R, Chan J, Liu Q, Snyder M Bioinformatics. 2020; 37(6):815-821.

PMID: 33098413 PMC: 8098025. DOI: 10.1093/bioinformatics/btaa904.


A Quantitative Proteome Map of the Human Body.

Jiang L, Wang M, Lin S, Jian R, Li X, Chan J Cell. 2020; 183(1):269-283.e19.

PMID: 32916130 PMC: 7575058. DOI: 10.1016/j.cell.2020.08.036.


MSstatsTMT: Statistical Detection of Differentially Abundant Proteins in Experiments with Isobaric Labeling and Multiple Mixtures.

Huang T, Choi M, Tzouros M, Golling S, Pandya N, Banfai B Mol Cell Proteomics. 2020; 19(10):1706-1723.

PMID: 32680918 PMC: 8015007. DOI: 10.1074/mcp.RA120.002105.


References
1.
Turck C, Falick A, Kowalak J, Lane W, Lilley K, Phinney B . The Association of Biomolecular Resource Facilities Proteomics Research Group 2006 study: relative protein quantitation. Mol Cell Proteomics. 2007; 6(8):1291-8. DOI: 10.1074/mcp.M700165-MCP200. View

2.
Unwin R, Pierce A, Watson R, Sternberg D, Whetton A . Quantitative proteomic analysis using isobaric protein tags enables rapid comparison of changes in transcript and protein levels in transformed cells. Mol Cell Proteomics. 2005; 4(7):924-35. DOI: 10.1074/mcp.M400193-MCP200. View

3.
Seshi B . An integrated approach to mapping the proteome of the human bone marrow stromal cell. Proteomics. 2006; 6(19):5169-82. DOI: 10.1002/pmic.200600209. View

4.
Salim K, Kehoe L, Minkoff M, Bilsland J, Munoz-Sanjuan I, Guest P . Identification of differentiating neural progenitor cell markers using shotgun isobaric tagging mass spectrometry. Stem Cells Dev. 2006; 15(3):461-70. DOI: 10.1089/scd.2006.15.461. View

5.
Jain N, Thatte J, Braciale T, Ley K, OConnell M, Lee J . Local-pooled-error test for identifying differentially expressed genes with a small number of replicated microarrays. Bioinformatics. 2003; 19(15):1945-51. DOI: 10.1093/bioinformatics/btg264. View