» Articles » PMID: 38716457

The Rise of Single-cell Proteomics

Overview
Journal Anal Sci Adv
Specialty Biotechnology
Date 2024 May 8
PMID 38716457
Authors
Affiliations
Soon will be listed here.
Abstract

Mass spectrometry-based proteomics comprehensively defines proteome expression patterns in thousands of cells majorly contributing to our current understanding of many biological processes. More recently, single-cell transcriptome and genome studies, however, have demonstrated overwhelming heterogeneity of tissues and cellular subpopulations. These studies have indicated different cellular functionality and identity, which are mainly driven by proteins and their posttranscriptional modifications. The rapidly emerging field of single-cell proteomics aims at complementing transcriptome and genome data by generating comparative protein expression profiles from individual cells. Recent developments demonstrated tremendous improvements in sample preparation workflows and MS instrumentation, quantifying over 1000 proteins from a single cell. Efficient and reproducible sample processing in conjunction with sensitive MS acquisition strategies will allow to further increase the proteome coverage of tissues with single-cell resolution. The required throughput and data reliability of such studies are still subject to further developments. Therefore, we herein discuss recent progress on specialized workflows and instrumentation next to advancements outside the field, which we expect to contribute to the development of comprehensive single-cell proteomics.

Citing Articles

Data acquisition approaches for single cell proteomics.

Ghosh G, Shannon A, Searle B Proteomics. 2024; 25(1-2):e2400022.

PMID: 39088833 PMC: 11735665. DOI: 10.1002/pmic.202400022.


Automated single-cell proteomics providing sufficient proteome depth to study complex biology beyond cell type classifications.

Ctortecka C, Clark N, Boyle B, Seth A, Mani D, Udeshi N Nat Commun. 2024; 15(1):5707.

PMID: 38977691 PMC: 11231172. DOI: 10.1038/s41467-024-49651-w.


Efficient and Sensitive Sample Preparation, Separations, and Data Acquisition for Label-Free Single-Cell Proteomics.

Truong T, Sanchez-Avila X, Webber K, Johnston S, Kelly R Methods Mol Biol. 2024; 2817:67-84.

PMID: 38907148 DOI: 10.1007/978-1-0716-3934-4_7.


Label-Free Sample Preparation for Single-Cell Proteomics.

Hartlmayr D, Ctortecka C, Mayer R, Mechtler K, Seth A Methods Mol Biol. 2024; 2817:1-7.

PMID: 38907142 DOI: 10.1007/978-1-0716-3934-4_1.


The rise of single-cell proteomics.

Ctortecka C, Mechtler K Anal Sci Adv. 2024; 2(3-4):84-94.

PMID: 38716457 PMC: 10989620. DOI: 10.1002/ansa.202000152.


References
1.
Karp N, Huber W, Sadowski P, Charles P, Hester S, Lilley K . Addressing accuracy and precision issues in iTRAQ quantitation. Mol Cell Proteomics. 2010; 9(9):1885-97. PMC: 2938101. DOI: 10.1074/mcp.M900628-MCP200. View

2.
Pichler P, Kocher T, Holzmann J, Mazanek M, Taus T, Ammerer G . Peptide labeling with isobaric tags yields higher identification rates using iTRAQ 4-plex compared to TMT 6-plex and iTRAQ 8-plex on LTQ Orbitrap. Anal Chem. 2010; 82(15):6549-58. PMC: 3093924. DOI: 10.1021/ac100890k. View

3.
Yu Q, Paulo J, Naverrete-Perea J, McAlister G, Canterbury J, Bailey D . Benchmarking the Orbitrap Tribrid Eclipse for Next Generation Multiplexed Proteomics. Anal Chem. 2020; 92(9):6478-6485. PMC: 7295122. DOI: 10.1021/acs.analchem.9b05685. View

4.
Li Z, Huang M, Wang X, Zhu Y, Li J, Wong C . Nanoliter-Scale Oil-Air-Droplet Chip-Based Single Cell Proteomic Analysis. Anal Chem. 2018; 90(8):5430-5438. DOI: 10.1021/acs.analchem.8b00661. View

5.
Bekker-Jensen D, Martinez-Val A, Steigerwald S, Ruther P, Fort K, Arrey T . A Compact Quadrupole-Orbitrap Mass Spectrometer with FAIMS Interface Improves Proteome Coverage in Short LC Gradients. Mol Cell Proteomics. 2020; 19(4):716-729. PMC: 7124470. DOI: 10.1074/mcp.TIR119.001906. View