» Articles » PMID: 23161689

GeneTack Database: Genes with Frameshifts in Prokaryotic Genomes and Eukaryotic MRNA Sequences

Overview
Specialty Biochemistry
Date 2012 Nov 20
PMID 23161689
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Database annotations of prokaryotic genomes and eukaryotic mRNA sequences pay relatively low attention to frame transitions that disrupt protein-coding genes. Frame transitions (frameshifts) could be caused by sequencing errors or indel mutations inside protein-coding regions. Other observed frameshifts are related to recoding events (that evolved to control expression of some genes). Earlier, we have developed an algorithm and software program GeneTack for ab initio frameshift finding in intronless genes. Here, we describe a database (freely available at http://topaz.gatech.edu/GeneTack/db.html) containing genes with frameshifts (fs-genes) predicted by GeneTack. The database includes 206 991 fs-genes from 1106 complete prokaryotic genomes and 45 295 frameshifts predicted in mRNA sequences from 100 eukaryotic genomes. The whole set of fs-genes was grouped into clusters based on sequence similarity between fs-proteins (conceptually translated fs-genes), conservation of the frameshift position and frameshift direction (-1, +1). The fs-genes can be retrieved by similarity search to a given query sequence via a web interface, by fs-gene cluster browsing, etc. Clusters of fs-genes are characterized with respect to their likely origin, such as pseudogenization, phase variation, etc. The largest clusters contain fs-genes with programed frameshifts (related to recoding events).

Citing Articles

rare codon UUA: from features associated with 2 related locations to candidate phage regulatory translational bypassing.

Antonov I, OLoughlin S, Gorohovski A, OConnor P, Baranov P, Atkins J RNA Biol. 2023; 20(1):926-942.

PMID: 37968863 PMC: 10732093. DOI: 10.1080/15476286.2023.2270812.


Programmed Deviations of Ribosomes From Standard Decoding in Archaea.

De Lise F, Strazzulli A, Iacono R, Curci N, Di Fenza M, Maurelli L Front Microbiol. 2021; 12:688061.

PMID: 34149676 PMC: 8211752. DOI: 10.3389/fmicb.2021.688061.


Incipient genome erosion and metabolic streamlining for antibiotic production in a defensive symbiont.

Nechitaylo T, Sandoval-Calderon M, Engl T, Wielsch N, Dunn D, Goesmann A Proc Natl Acad Sci U S A. 2021; 118(17).

PMID: 33883280 PMC: 8092579. DOI: 10.1073/pnas.2023047118.


Search for potential reading frameshifts in cds from Arabidopsis thaliana and other genomes.

Suvorova Y, Korotkova M, Skryabin K, Korotkov E DNA Res. 2019; 26(2):157-170.

PMID: 30726896 PMC: 6476729. DOI: 10.1093/dnares/dsy046.


Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use.

Atkins J, Loughran G, Bhatt P, Firth A, Baranov P Nucleic Acids Res. 2016; 44(15):7007-78.

PMID: 27436286 PMC: 5009743. DOI: 10.1093/nar/gkw530.


References
1.
van der Woude M, Baumler A . Phase and antigenic variation in bacteria. Clin Microbiol Rev. 2004; 17(3):581-611, table of contents. PMC: 452554. DOI: 10.1128/CMR.17.3.581-611.2004. View

2.
Besemer J, Lomsadze A, Borodovsky M . GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001; 29(12):2607-18. PMC: 55746. DOI: 10.1093/nar/29.12.2607. View

3.
Craigen W, Caskey C . Expression of peptide chain release factor 2 requires high-efficiency frameshift. Nature. 1986; 322(6076):273-5. DOI: 10.1038/322273a0. View

4.
Deshayes C, Perrodou E, Gallien S, Euphrasie D, Schaeffer C, van-Dorsselaer A . Interrupted coding sequences in Mycobacterium smegmatis: authentic mutations or sequencing errors?. Genome Biol. 2007; 8(2):R20. PMC: 1852416. DOI: 10.1186/gb-2007-8-2-r20. View

5.
Baranov P, Gesteland R, Atkins J . Recoding: translational bifurcations in gene expression. Gene. 2002; 286(2):187-201. DOI: 10.1016/s0378-1119(02)00423-7. View