» Articles » PMID: 17295914

Interrupted Coding Sequences in Mycobacterium Smegmatis: Authentic Mutations or Sequencing Errors?

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2007 Feb 14
PMID 17295914
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Background: In silico analysis has shown that all bacterial genomes contain a low percentage of ORFs with undetected frameshifts and in-frame stop codons. These interrupted coding sequences (ICDSs) may really be present in the organism or may result from misannotation based on sequencing errors. The reality or otherwise of these sequences has major implications for all subsequent functional characterization steps, including module prediction, comparative genomics and high-throughput proteomic projects.

Results: We show here, using Mycobacterium smegmatis as a model species, that a significant proportion of these ICDSs result from sequencing errors. We used a resequencing procedure and mass spectrometry analysis to determine the nature of a number of ICDSs in this organism. We found that 28 of the 73 ICDSs investigated correspond to sequencing errors.

Conclusion: The correction of these errors results in modification of the predicted amino acid sequences of the corresponding proteins and changes in annotation. We suggest that each bacterial ICDS should be investigated individually, to determine its true status and to ensure that the genome sequence is appropriate for comparative genomics analyses.

Citing Articles

Investigating the role of in intrinsic resistance to multiple drugs in .

Yusuf B, Wang S, Alam M, Zhang J, Liu Z, Lu Z Microbiol Spectr. 2024; 12(10):e0397423.

PMID: 39162545 PMC: 11448072. DOI: 10.1128/spectrum.03974-23.


Mycobacterium smegmatis does not display functional redundancy in nitrate reductase enzymes.

Cardoso N, Papadopoulos A, Kana B PLoS One. 2021; 16(1):e0245745.

PMID: 33471823 PMC: 7816997. DOI: 10.1371/journal.pone.0245745.


REPARATION: ribosome profiling assisted (re-)annotation of bacterial genomes.

Ndah E, Jonckheere V, Giess A, Valen E, Menschaert G, Van Damme P Nucleic Acids Res. 2017; 45(20):e168.

PMID: 28977509 PMC: 5714196. DOI: 10.1093/nar/gkx758.


Determining the mode of action of anti-mycobacterial C17 diyne natural products using expression profiling: evidence for fatty acid biosynthesis inhibition.

Li H, Cowie A, Johnson J, Webster D, Martyniuk C, Gray C BMC Genomics. 2016; 17(1):621.

PMID: 27514659 PMC: 4981992. DOI: 10.1186/s12864-016-2949-y.


Proteogenomic Analysis of Mycobacterium smegmatis Using High Resolution Mass Spectrometry.

Potgieter M, Nakedi K, Ambler J, Nel A, Garnett S, Soares N Front Microbiol. 2016; 7:427.

PMID: 27092112 PMC: 4821088. DOI: 10.3389/fmicb.2016.00427.


References
1.
Gurvich O, Baranov P, Zhou J, Hammer A, Gesteland R, Atkins J . Sequences that direct significant levels of frameshifting are frequent in coding regions of Escherichia coli. EMBO J. 2003; 22(21):5941-50. PMC: 275418. DOI: 10.1093/emboj/cdg561. View

2.
Steen H, Mann M . The ABC's (and XYZ's) of peptide sequencing. Nat Rev Mol Cell Biol. 2004; 5(9):699-711. DOI: 10.1038/nrm1468. View

3.
Salzberg S, Church D, DiCuccio M, Yaschenko E, Ostell J . The genome Assembly Archive: a new public resource. PLoS Biol. 2004; 2(9):E285. PMC: 516794. DOI: 10.1371/journal.pbio.0020285. View

4.
Galamba A, Soetaert K, Wang X, de Bruyn J, Jacobs P, Content J . Disruption of adhC reveals a large duplication in the Mycobacterium smegmatis mc(2)155 genome. Microbiology (Reading). 2001; 147(Pt 12):3281-94. DOI: 10.1099/00221287-147-12-3281. View

5.
Etienne G, Villeneuve C, Billman-Jacobe H, Astarie-Dequeker C, Daffe M . The impact of the absence of glycopeptidolipids on the ultrastructure, cell surface and cell wall properties, and phagocytosis of Mycobacterium smegmatis. Microbiology (Reading). 2002; 148(Pt 10):3089-3100. DOI: 10.1099/00221287-148-10-3089. View