» Articles » PMID: 23151509

Microbial Conversion of Choline to Trimethylamine Requires a Glycyl Radical Enzyme

Overview
Specialty Science
Date 2012 Nov 16
PMID 23151509
Citations 327
Authors
Affiliations
Soon will be listed here.
Abstract

Choline and trimethylamine (TMA) are small molecules that play central roles in biological processes throughout all kingdoms of life. These ubiquitous metabolites are linked through a single biochemical transformation, the conversion of choline to TMA by anaerobic microorganisms. This metabolic activity, which contributes to methanogenesis and human disease, has been known for over a century but has eluded genetic and biochemical characterization. We have identified a gene cluster responsible for anaerobic choline degradation within the genome of a sulfate-reducing bacterium and verified its function using both a genetic knockout strategy and heterologous expression in Escherichia coli. Bioinformatics and electron paramagnetic resonance (EPR) spectroscopy revealed the involvement of a C-N bond cleaving glycyl radical enzyme in TMA production, which is unprecedented chemistry for this enzyme family. Our discovery provides the predictive capabilities needed to identify choline utilization clusters in numerous bacterial genomes, underscoring the importance and prevalence of this metabolic activity within the human microbiota and the environment.

Citing Articles

Genomic highlights of the phylogenetically unique halophilic purple nonsulfur bacterium, Rhodothalassium salexigens.

Madigan M, Bender K, Parenteau M, Kimura Y, Wang-Otomo Z, Sattley W Extremophiles. 2025; 29(1):12.

PMID: 39862325 PMC: 11762602. DOI: 10.1007/s00792-025-01380-8.


Impacts of intestinal microbiota metabolite trimethylamine N-oxide on cardiovascular disease: a bibliometric analysis.

Leng X, Wei X, Wang J, Yao X, Zhang M, Sun D Front Microbiol. 2025; 15():1491731.

PMID: 39834376 PMC: 11743947. DOI: 10.3389/fmicb.2024.1491731.


Gut microbiota dysbiosis contributes to choline unavailability and NAFLD development.

Moradzad M, Ghaderi D, Abdi M, Sheikh Esmaili F, Rahmani K, Vahabzadeh Z J Diabetes Metab Disord. 2025; 24(1):37.

PMID: 39801684 PMC: 11711859. DOI: 10.1007/s40200-024-01511-6.


Exploring Trimethylaminuria: Genetics and Molecular Mechanisms, Epidemiology, and Emerging Therapeutic Strategies.

Sidoti A, DAngelo R, Castagnetti A, Viciani E, Scimone C, Alibrandi S Biology (Basel). 2025; 13(12.

PMID: 39765628 PMC: 11726875. DOI: 10.3390/biology13120961.


Association of TMAO levels with indicators of ulcerative colitis activity.

Laryushina Y, Samoilova-Bedych N, Turgunova L, Marchenko A, Turgunov Y Caspian J Intern Med. 2024; 16(1):114-125.

PMID: 39619747 PMC: 11607106. DOI: 10.22088/cjim.16.1.114.


References
1.
Fiebig K, Gottschalk G . Methanogenesis from Choline by a Coculture of Desulfovibrio sp. and Methanosarcina barkeri. Appl Environ Microbiol. 1983; 45(1):161-8. PMC: 242247. DOI: 10.1128/aem.45.1.161-168.1983. View

2.
Wall J, Murnan T, Argyle J, English R . Transposon mutagenesis in Desulfovibrio desulfuricans: development of a random mutagenesis tool from Tn7. Appl Environ Microbiol. 1996; 62(10):3762-7. PMC: 168183. DOI: 10.1128/aem.62.10.3762-3767.1996. View

3.
Zeisel S, Wishnok J, Blusztajn J . Formation of methylamines from ingested choline and lecithin. J Pharmacol Exp Ther. 1983; 225(2):320-4. View

4.
Soding J, Biegert A, Lupas A . The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 2005; 33(Web Server issue):W244-8. PMC: 1160169. DOI: 10.1093/nar/gki408. View

5.
Neill A, Grime D, Dawson R . Conversion of choline methyl groups through trimethylamine into methane in the rumen. Biochem J. 1978; 170(3):529-35. PMC: 1183928. DOI: 10.1042/bj1700529. View