6.
Zhou P, Zhao X, Ma Y, Tang T, Wang S, Wang L
. Virtual screening analysis of natural flavonoids as trimethylamine (TMA)-lyase inhibitors for coronary heart disease. J Food Biochem. 2022; 46(12):e14376.
DOI: 10.1111/jfbc.14376.
View
7.
Simo C, Garcia-Canas V
. Dietary bioactive ingredients to modulate the gut microbiota-derived metabolite TMAO. New opportunities for functional food development. Food Funct. 2020; 11(8):6745-6776.
DOI: 10.1039/d0fo01237h.
View
8.
Shephard E, Chandan P, Stevanovic-Walker M, Edwards M, Phillips I
. Alternative promoters and repetitive DNA elements define the species-dependent tissue-specific expression of the FMO1 genes of human and mouse. Biochem J. 2007; 406(3):491-9.
PMC: 2049042.
DOI: 10.1042/BJ20070523.
View
9.
Mitchell S, Smith R
. Trimethylaminuria: the fish malodor syndrome. Drug Metab Dispos. 2001; 29(4 Pt 2):517-21.
View
10.
Mayatepek E, Kohlmuller D
. Transient trimethylaminuria in childhood. Acta Paediatr. 1998; 87(11):1205-7.
DOI: 10.1080/080352598750031257.
View
11.
Al-Waiz M, Ayesh R, Mitchell S, Idle J, Smith R
. A genetic polymorphism of the N-oxidation of trimethylamine in humans. Clin Pharmacol Ther. 1987; 42(5):588-94.
DOI: 10.1038/clpt.1987.201.
View
12.
DAngelo R, Esposito T, Calabro M, Rinaldi C, Robledo R, Varriale B
. FMO3 allelic variants in Sicilian and Sardinian populations: trimethylaminuria and absence of fish-like body odor. Gene. 2012; 515(2):410-5.
DOI: 10.1016/j.gene.2012.12.047.
View
13.
Martinez-Del Campo A, Bodea S, Hamer H, Marks J, Haiser H, Turnbaugh P
. Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria. mBio. 2015; 6(2).
PMC: 4453576.
DOI: 10.1128/mBio.00042-15.
View
14.
Maksymiuk K, Szudzik M, Gawrys-Kopczynska M, Onyszkiewicz M, Samborowska E, Mogilnicka I
. Trimethylamine, a gut bacteria metabolite and air pollutant, increases blood pressure and markers of kidney damage including proteinuria and KIM-1 in rats. J Transl Med. 2022; 20(1):470.
PMC: 9571686.
DOI: 10.1186/s12967-022-03687-y.
View
15.
Kalnins G, Sevostjanovs E, Hartmane D, Grinberga S, Tars K
. CntA oxygenase substrate profile comparison and oxygen dependency of TMA production in Providencia rettgeri. J Basic Microbiol. 2017; 58(1):52-59.
DOI: 10.1002/jobm.201700428.
View
16.
Alibrandi S, Nicita F, Donato L, Scimone C, Rinaldi C, DAngelo R
. Adaptive Modelling of Mutated FMO3 Enzyme Could Unveil Unexplored Scenarios Linking Variant Haplotypes to TMAU Phenotypes. Molecules. 2021; 26(22).
PMC: 8618768.
DOI: 10.3390/molecules26227045.
View
17.
Li J, Huang P, Cheng W, Niu Q
. Stilbene-based derivatives as potential inhibitors of trimethylamine (TMA)-lyase affect gut microbiota in coronary heart disease. Food Sci Nutr. 2023; 11(1):93-100.
PMC: 9834892.
DOI: 10.1002/fsn3.3046.
View
18.
Shimizu M, Cashman J, Yamazaki H
. Transient trimethylaminuria related to menstruation. BMC Med Genet. 2007; 8:2.
PMC: 1790885.
DOI: 10.1186/1471-2350-8-2.
View
19.
Treacy E, Akerman B, CHOW L, Youil R, Bibeau C, Lin J
. Mutations of the flavin-containing monooxygenase gene (FMO3) cause trimethylaminuria, a defect in detoxication. Hum Mol Genet. 1998; 7(5):839-45.
DOI: 10.1093/hmg/7.5.839.
View
20.
Hernandez D, Janmohamed A, Chandan P, Phillips I, Shephard E
. Organization and evolution of the flavin-containing monooxygenase genes of human and mouse: identification of novel gene and pseudogene clusters. Pharmacogenetics. 2004; 14(2):117-30.
DOI: 10.1097/00008571-200402000-00006.
View