» Articles » PMID: 23151085

Design, Synthesis, and Pharmacological Evaluation of Bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl Sulfide 3 (BPTES) Analogs As Glutaminase Inhibitors

Overview
Journal J Med Chem
Specialty Chemistry
Date 2012 Nov 16
PMID 23151085
Citations 100
Authors
Affiliations
Soon will be listed here.
Abstract

Bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) is a potent and selective allosteric inhibitor of kidney-type glutaminase (GLS) that has served as a molecular probe to determine the therapeutic potential of GLS inhibition. In an attempt to identify more potent GLS inhibitors with improved drug-like molecular properties, a series of BPTES analogs were synthesized and evaluated. Our structure-activity relationship (SAR) studies revealed that some truncated analogs retained the potency of BPTES, presenting an opportunity to improve its aqueous solubility. One of the analogs, N-(5-{2-[2-(5-amino-[1,3,4]thiadiazol-2-yl)-ethylsulfanyl]-ethyl}-[1,3,4]thiadiazol-2-yl)-2-phenyl-acetamide 6, exhibited similar potency and better solubility relative to BPTES and attenuated the growth of P493 human lymphoma B cells in vitro as well as in a mouse xenograft model.

Citing Articles

Discovery and Optimization of Ergosterol Peroxide Derivatives as Novel Glutaminase 1 Inhibitors for the Treatment of Triple-Negative Breast Cancer.

Luo R, Zhao H, Deng S, Wu J, Wang H, Guo X Molecules. 2024; 29(18).

PMID: 39339370 PMC: 11434480. DOI: 10.3390/molecules29184375.


Metabolic Reprogramming in Glioblastoma Multiforme: A Review of Pathways and Therapeutic Targets.

Cortes Ballen A, Amosu M, Ravinder S, Chan J, Derin E, Slika H Cells. 2024; 13(18.

PMID: 39329757 PMC: 11430559. DOI: 10.3390/cells13181574.


Glutaminolysis is a Potential Therapeutic Target for Kidney Diseases.

Ou L, Liu Y, Qiu S, Yang C, Tang J, Li X Diabetes Metab Syndr Obes. 2024; 17:2789-2807.

PMID: 39072347 PMC: 11283263. DOI: 10.2147/DMSO.S471711.


HIF2α inhibits glutaminase clustering in mitochondria to sustain growth of clear cell Renal Cell Carcinoma.

Zhao W, Kim B, Coffey N, Bowers S, Jiang Y, Bowman C bioRxiv. 2024; .

PMID: 38746132 PMC: 11092754. DOI: 10.1101/2024.05.04.592520.


Exploiting the Achilles' heel of cancer: disrupting glutamine metabolism for effective cancer treatment.

Fan Y, Xue H, Li Z, Huo M, Gao H, Guan X Front Pharmacol. 2024; 15:1345522.

PMID: 38510646 PMC: 10952006. DOI: 10.3389/fphar.2024.1345522.


References
1.
Martin-Rufian M, Tosina M, Campos-Sandoval J, Manzanares E, Lobo C, Segura J . Mammalian glutaminase Gls2 gene encodes two functional alternative transcripts by a surrogate promoter usage mechanism. PLoS One. 2012; 7(6):e38380. PMC: 3367983. DOI: 10.1371/journal.pone.0038380. View

2.
Erickson J, Cerione R . Glutaminase: a hot spot for regulation of cancer cell metabolism?. Oncotarget. 2011; 1(8):734-40. PMC: 3018840. DOI: 10.18632/oncotarget.208. View

3.
Robinson M, McBryant S, Tsukamoto T, Rojas C, Ferraris D, Hamilton S . Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem J. 2007; 406(3):407-14. PMC: 2049044. DOI: 10.1042/BJ20070039. View

4.
Le A, Lane A, Hamaker M, Bose S, Gouw A, Barbi J . Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 2012; 15(1):110-21. PMC: 3345194. DOI: 10.1016/j.cmet.2011.12.009. View

5.
Yuneva M, Fan T, Allen T, Higashi R, Ferraris D, Tsukamoto T . The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 2012; 15(2):157-70. PMC: 3282107. DOI: 10.1016/j.cmet.2011.12.015. View