Chung J, Plaxco K, Sepunaru L
J Vis Exp. 2023; (198).
PMID: 37590554
PMC: 11332252.
DOI: 10.3791/65116.
Alden S, Siepser N, Patterson J, Jagdale G, Choi M, Baker L
ChemElectroChem. 2023; 7(5):1084-1091.
PMID: 36588586
PMC: 9798888.
DOI: 10.1002/celc.201901976.
Huang K, Crooks R
Chem Sci. 2022; 13(42):12479-12490.
PMID: 36349269
PMC: 9628932.
DOI: 10.1039/d2sc03433f.
Moazzenzade T, Walstra T, Yang X, Huskens J, Lemay S
Anal Chem. 2022; 94(28):10168-10174.
PMID: 35792954
PMC: 9310007.
DOI: 10.1021/acs.analchem.2c01503.
Lemay S, Moazzenzade T
Anal Chem. 2021; 93(26):9023-9031.
PMID: 34167291
PMC: 8264825.
DOI: 10.1021/acs.analchem.1c00510.
Local probe investigation of electrocatalytic activity.
Limani N, Boudet A, Blanchard N, Jousselme B, Cornut R
Chem Sci. 2021; 12(1):71-98.
PMID: 34163583
PMC: 8178752.
DOI: 10.1039/d0sc04319b.
Hydrogen peroxide reduction on single platinum nanoparticles.
Chang X, Batchelor-McAuley C, Compton R
Chem Sci. 2021; 11(17):4416-4421.
PMID: 34122898
PMC: 8159481.
DOI: 10.1039/d0sc00379d.
A Universal Nano-capillary Based Method of Catalyst Immobilization for Liquid-Cell Transmission Electron Microscopy.
Tarnev T, Cychy S, Andronescu C, Muhler M, Schuhmann W, Chen Y
Angew Chem Int Ed Engl. 2020; 59(14):5586-5590.
PMID: 31960548
PMC: 7155139.
DOI: 10.1002/anie.201916419.
Advanced Nanoscale Approaches to Single-(Bio)entity Sensing and Imaging.
Neves M, Martin-Yerga D
Biosensors (Basel). 2018; 8(4).
PMID: 30373209
PMC: 6316691.
DOI: 10.3390/bios8040100.
Chronoamperometric Observation and Analysis of Electrocatalytic Ability of Single Pd Nanoparticle for Hydrogen Peroxide Reduction Reaction.
Park J, Kim K, Son H, Kwon S
Nanomaterials (Basel). 2018; 8(11).
PMID: 30373100
PMC: 6266670.
DOI: 10.3390/nano8110879.
Nucleation, aggregative growth and detachment of metal nanoparticles during electrodeposition at electrode surfaces.
Lai S, Lazenby R, Kirkman P, Unwin P
Chem Sci. 2018; 6(2):1126-1138.
PMID: 29560200
PMC: 5811076.
DOI: 10.1039/c4sc02792b.
Quasi-reference electrodes in confined electrochemical cells can result in in situ production of metallic nanoparticles.
Perera R, Rosenstein J
Sci Rep. 2018; 8(1):1965.
PMID: 29386652
PMC: 5792608.
DOI: 10.1038/s41598-018-20412-2.
Direct electrochemical detection of individual collisions between magnetic microbead/silver nanoparticle conjugates and a magnetized ultramicroelectrode.
Yoo J, Kim J, Crooks R
Chem Sci. 2017; 6(11):6665-6671.
PMID: 28757965
PMC: 5506620.
DOI: 10.1039/c5sc02259b.
Charging and discharging at the nanoscale: Fermi level equilibration of metallic nanoparticles.
Scanlon M, Peljo P, Mendez M, Smirnov E, Girault H
Chem Sci. 2017; 6(5):2705-2720.
PMID: 28706663
PMC: 5489025.
DOI: 10.1039/c5sc00461f.
Observing single nanoparticle events at the orifice of a nanopipet.
Li T, He X, Zhang K, Wang K, Yu P, Mao L
Chem Sci. 2017; 7(10):6365-6368.
PMID: 28567249
PMC: 5450441.
DOI: 10.1039/c6sc02241c.
Tracking motion trajectories of individual nanoparticles using time-resolved current traces.
Ma W, Ma H, Chen J, Peng Y, Yang Z, Wang H
Chem Sci. 2017; 8(3):1854-1861.
PMID: 28553475
PMC: 5424808.
DOI: 10.1039/c6sc04582k.
Impact and oxidation of single silver nanoparticles at electrode surfaces: one shot multiple events.
Ustarroz J, Kang M, Bullions E, Unwin P
Chem Sci. 2017; 8(3):1841-1853.
PMID: 28553474
PMC: 5424807.
DOI: 10.1039/c6sc04483b.
Advanced electroanalytical chemistry at nanoelectrodes.
Ying Y, Ding Z, Zhan D, Long Y
Chem Sci. 2017; 8(5):3338-3348.
PMID: 28507703
PMC: 5416909.
DOI: 10.1039/c7sc00433h.
Electrocatalytic amplification of DNA-modified nanoparticle collisions enzymatic digestion.
Castaneda A, Robinson D, Stevenson K, Crooks R
Chem Sci. 2017; 7(10):6450-6457.
PMID: 28451102
PMC: 5356041.
DOI: 10.1039/c6sc02165d.
Single-Nanoparticle Electrochemistry through Immobilization and Collision.
Anderson T, Zhang B
Acc Chem Res. 2016; 49(11):2625-2631.
PMID: 27730817
PMC: 5518676.
DOI: 10.1021/acs.accounts.6b00334.