» Articles » PMID: 28706663

Charging and Discharging at the Nanoscale: Fermi Level Equilibration of Metallic Nanoparticles

Overview
Journal Chem Sci
Specialty Chemistry
Date 2017 Jul 15
PMID 28706663
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

The redox properties of metallic nanoparticles are discussed, in particular the relationships between excess charge, size and the Fermi level of the electrons. The redox potentials are derived using simple electrostatic models to provide a straightforward understanding of the basic phenomena. The different techniques used to measure the variation of Fermi level are presented. Finally, redox aspects of processes such as toxicity, electrochromicity and surface plasmon spectroscopy are discussed.

Citing Articles

The redox aspects of lithium-ion batteries.

Peljo P, Villevieille C, Girault H Energy Environ Sci. 2025; 18(4):1658-1672.

PMID: 39866363 PMC: 11753199. DOI: 10.1039/d4ee04560b.


A Contactless Method for Measuring the Redox Potentials of Metal Nanoparticles.

Espinoza R, Cahua D, Magro K, Nguyen S J Phys Chem Lett. 2024; 15(50):12243-12247.

PMID: 39635858 PMC: 11664645. DOI: 10.1021/acs.jpclett.4c02998.


Electrochemical photonics: a pathway towards electrovariable optical metamaterials.

Edel J, Ma Y, Kornyshev A Nanophotonics. 2024; 12(14):2717-2744.

PMID: 39635491 PMC: 11501799. DOI: 10.1515/nanoph-2023-0053.


Electrochemically decoupled reduction of CO to formate over a dispersed heterogeneous bismuth catalyst enabled redox mediators.

Potter M, Smith D, Armstrong C, Toghill K EES Catal. 2024; 2(1):379-388.

PMID: 38222063 PMC: 10782805. DOI: 10.1039/d3ey00271c.


New insights into the influence of plasmonic and non-plasmonic nanostructures on the photocatalytic activity of titanium dioxide.

Jakiminska A, Spilarewicz K, Macyk W Nanoscale Adv. 2023; 5(22):6038-6044.

PMID: 37941939 PMC: 10628983. DOI: 10.1039/d3na00513e.


References
1.
Masitas R, Zamborini F . Oxidation of highly unstable <4 nm diameter gold nanoparticles 850 mV negative of the bulk oxidation potential. J Am Chem Soc. 2012; 134(11):5014-7. DOI: 10.1021/ja2108933. View

2.
Kwon S, Fan F, Bard A . Observing iridium oxide (IrO(x)) single nanoparticle collisions at ultramicroelectrodes. J Am Chem Soc. 2010; 132(38):13165-7. DOI: 10.1021/ja106054c. View

3.
Pumera M . Impact electrochemistry: measuring individual nanoparticles. ACS Nano. 2014; 8(8):7555-8. DOI: 10.1021/nn503831r. View

4.
Laaksonen T, Ruiz V, Liljeroth P, Quinn B . Quantised charging of monolayer-protected nanoparticles. Chem Soc Rev. 2008; 37(9):1836-46. DOI: 10.1039/b713681c. View

5.
Smirnov E, Scanlon M, Momotenko D, Vrubel H, Mendez M, Brevet P . Gold metal liquid-like droplets. ACS Nano. 2014; 8(9):9471-81. DOI: 10.1021/nn503644v. View