» Articles » PMID: 35792954

Ring Ultramicroelectrodes for Current-Blockade Particle-Impact Electrochemistry

Overview
Journal Anal Chem
Specialty Chemistry
Date 2022 Jul 6
PMID 35792954
Authors
Affiliations
Soon will be listed here.
Abstract

In current-blockade impact electrochemistry, insulating particles are detected amperometrically as they impinge upon a micro- or nanoelectrode via a decrease in the faradaic current caused by a redox mediator. A limit of the method is that analytes of a given size yield a broad distribution of response amplitudes due to the inhomogeneities of the mediator flux at the electrode surface. Here, we overcome this limitation by introducing microfabricated ring-shaped electrodes with a width that is significantly smaller than the size of the target particles. We show that the relative step size is somewhat larger and exhibits a narrower distribution than at a conventional ultramicroelectrode of equal diameter.

Citing Articles

The role of applied potential on particle sizing precision in single-entity blocking electrochemistry.

Liu E, Popescu S, Eden A, Chung J, Roehrich B, Sepunaru L Electrochim Acta. 2024; 472.

PMID: 39070043 PMC: 11283758. DOI: 10.1016/j.electacta.2023.143397.


High-Throughput Single-Entity Electrochemistry with Microelectrode Arrays.

Alden S, Zhang L, Wang Y, Lavrik N, Thorgaard S, Baker L Anal Chem. 2024; 96(22):9177-9184.

PMID: 38780285 PMC: 11154736. DOI: 10.1021/acs.analchem.4c01092.


Recent Developments in Single-Entity Electrochemistry.

Zhang L, Wahab O, Jallow A, ODell Z, Pungsrisai T, Sridhar S Anal Chem. 2024; 96(20):8036-8055.

PMID: 38727715 PMC: 11112546. DOI: 10.1021/acs.analchem.4c01406.


Utilizing the Oxygen Reduction Reaction in Particle Impact Electrochemistry: A Step toward Mediator-Free Digital Electrochemical Sensors.

Moazzenzade T, Huskens J, Lemay S ACS Omega. 2023; 8(34):31265-31270.

PMID: 37663480 PMC: 10468766. DOI: 10.1021/acsomega.3c03576.


Precise Electrochemical Sizing of Individual Electro-Inactive Particles.

Chung J, Plaxco K, Sepunaru L J Vis Exp. 2023; (198).

PMID: 37590554 PMC: 11332252. DOI: 10.3791/65116.


References
1.
Dick J, Hilterbrand A, Strawsine L, Upton J, Bard A . Enzymatically enhanced collisions on ultramicroelectrodes for specific and rapid detection of individual viruses. Proc Natl Acad Sci U S A. 2016; 113(23):6403-8. PMC: 4988591. DOI: 10.1073/pnas.1605002113. View

2.
Castaneda A, Brenes N, Kondajji A, Crooks R . Detection of microRNA by Electrocatalytic Amplification: A General Approach for Single-Particle Biosensing. J Am Chem Soc. 2017; 139(22):7657-7664. DOI: 10.1021/jacs.7b03648. View

3.
Robinson D, Kondajji A, Castaneda A, Dasari R, Crooks R, Stevenson K . Addressing Colloidal Stability for Unambiguous Electroanalysis of Single Nanoparticle Impacts. J Phys Chem Lett. 2016; 7(13):2512-7. DOI: 10.1021/acs.jpclett.6b01131. View

4.
Renault C, Lemay S . Electrochemical Collisions of Individual Graphene Oxide Sheets: An Analytical and Fundamental Study. ChemElectroChem. 2020; 7(1):69-73. PMC: 6973065. DOI: 10.1002/celc.201901606. View

5.
Quinn B, Van t Hof P, Lemay S . Time-resolved electrochemical detection of discrete adsorption events. J Am Chem Soc. 2004; 126(27):8360-1. DOI: 10.1021/ja0478577. View