» Articles » PMID: 23018234

The NAD Metabolome--a Key Determinant of Cancer Cell Biology

Overview
Journal Nat Rev Cancer
Specialty Oncology
Date 2012 Sep 29
PMID 23018234
Citations 298
Authors
Affiliations
Soon will be listed here.
Abstract

NAD is a vital molecule in all organisms. It is a key component of both energy and signal transduction--processes that undergo crucial changes in cancer cells. NAD(+)-dependent signalling pathways are many and varied, and they regulate fundamental events such as transcription, DNA repair, cell cycle progression, apoptosis and metabolism. Many of these processes have been linked to cancer development. Given that NAD(+)-dependent signalling reactions involve the degradation of the molecule, permanent nucleotide resynthesis through different biosynthetic pathways is crucial for incessant cancer cell proliferation. This necessity supports the targeting of NAD metabolism as a new therapeutic concept for cancer treatment.

Citing Articles

Spectroscopic Study of Methylene Blue Interaction with Coenzymes and its Effect on Tumor Metabolism.

Pominova D, Ryabova A, Skobeltsin A, Markova I, Romanishkin I Sovrem Tekhnologii Med. 2025; 17(1):18-25.

PMID: 40071073 PMC: 11892571. DOI: 10.17691/stm2025.17.1.02.


NAD+ Suppresses EV-D68 Infection by Enhancing Anti-Viral Effect of SIRT1.

Wang Y, Li H, Huang X, Huang Y, Lv M, Tang H Viruses. 2025; 17(2).

PMID: 40006932 PMC: 11860866. DOI: 10.3390/v17020175.


Redox state of NAD modulates the activation of Na-bicarbonate cotransporter NBCe1-B via IRBIT and L-IRBIT.

Gui T, Liu Y, Fu M, Wu H, Su P, Feng X Sci China Life Sci. 2025; .

PMID: 39985648 DOI: 10.1007/s11427-024-2750-0.


Autophagy induced by metabolic processes leads to solid tumor cell metastatic dormancy and recurrence.

Ferdousmakan S, Mansourian D, Seyedi Asl F, Fathi Z, Maleki-Sheikhabadi F, Nabi Afjadi M Med Oncol. 2025; 42(3):62.

PMID: 39899220 DOI: 10.1007/s12032-025-02607-6.


Accumulation of CD38 in Hybrid Epithelial/Mesenchymal Cells Promotes Immune Remodeling and Metastasis in Breast Cancer.

Visal T, Bayraktar R, den Hollander P, Attathikhun M, Zhou T, Wang J Cancer Res. 2025; 85(5):894-911.

PMID: 39853244 PMC: 11873730. DOI: 10.1158/0008-5472.CAN-24-0400.


References
1.
Meszaros L, Bak J, Chu A . Cyclic ADP-ribose as an endogenous regulator of the non-skeletal type ryanodine receptor Ca2+ channel. Nature. 1993; 364(6432):76-9. DOI: 10.1038/364076a0. View

2.
Tong L, Denu J . Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose. Biochim Biophys Acta. 2010; 1804(8):1617-25. PMC: 3310390. DOI: 10.1016/j.bbapap.2010.02.007. View

3.
Lukasova M, Hanson J, Tunaru S, Offermanns S . Nicotinic acid (niacin): new lipid-independent mechanisms of action and therapeutic potentials. Trends Pharmacol Sci. 2011; 32(12):700-7. DOI: 10.1016/j.tips.2011.08.002. View

4.
Rouleau M, Patel A, Hendzel M, Kaufmann S, Poirier G . PARP inhibition: PARP1 and beyond. Nat Rev Cancer. 2010; 10(4):293-301. PMC: 2910902. DOI: 10.1038/nrc2812. View

5.
Von Heideman A, Berglund A, Larsson R, Nygren P . Safety and efficacy of NAD depleting cancer drugs: results of a phase I clinical trial of CHS 828 and overview of published data. Cancer Chemother Pharmacol. 2009; 65(6):1165-72. DOI: 10.1007/s00280-009-1125-3. View