6.
Yoshida Y, Itoh N, Saito Y, Hayakawa M, Niki E
. Application of water-soluble radical initiator, 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride, to a study of oxidative stress. Free Radic Res. 2004; 38(4):375-84.
DOI: 10.1080/1071576042000191763.
View
7.
Liu H, Hu X, Li K, Liu Y, Rong Q, Zhu L
. A mitochondrial-targeted prodrug for NIR imaging guided and synergetic NIR photodynamic-chemo cancer therapy. Chem Sci. 2018; 8(11):7689-7695.
PMC: 5861986.
DOI: 10.1039/c7sc03454g.
View
8.
Maeda H, Wu J, Sawa T, Matsumura Y, Hori K
. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000; 65(1-2):271-84.
DOI: 10.1016/s0168-3659(99)00248-5.
View
9.
Sun J, Li X, Cao J, Sun Q, Zhang Y, Wang X
. Mitochondria Targeting Fluorescent Probes Based on through Bond-Energy Transfer for Mutually Imaging Signaling Molecules H S and H O. Chemistry. 2019; 25(39):9164-9169.
DOI: 10.1002/chem.201900959.
View
10.
Rullier E, Rouanet P, Tuech J, Valverde A, Lelong B, Rivoire M
. Organ preservation for rectal cancer (GRECCAR 2): a prospective, randomised, open-label, multicentre, phase 3 trial. Lancet. 2017; 390(10093):469-479.
DOI: 10.1016/S0140-6736(17)31056-5.
View
11.
Li X, Zhao Y, Zhang T, Xing D
. Mitochondria-Specific Agents for Photodynamic Cancer Therapy: A Key Determinant to Boost the Efficacy. Adv Healthc Mater. 2020; 10(3):e2001240.
DOI: 10.1002/adhm.202001240.
View
12.
Kang X, Zhang Y, Song J, Wang L, Li W, Qi J
. A photo-triggered self-accelerated nanoplatform for multifunctional image-guided combination cancer immunotherapy. Nat Commun. 2023; 14(1):5216.
PMC: 10457322.
DOI: 10.1038/s41467-023-40996-2.
View
13.
Wang K, Tepper J
. Radiation therapy-associated toxicity: Etiology, management, and prevention. CA Cancer J Clin. 2021; 71(5):437-454.
DOI: 10.3322/caac.21689.
View
14.
Chiarugi A, Dolle C, Felici R, Ziegler M
. The NAD metabolome--a key determinant of cancer cell biology. Nat Rev Cancer. 2012; 12(11):741-52.
DOI: 10.1038/nrc3340.
View
15.
Kabanov A, Batrakova E, Alakhov V
. Pluronic block copolymers for overcoming drug resistance in cancer. Adv Drug Deliv Rev. 2002; 54(5):759-79.
DOI: 10.1016/s0169-409x(02)00047-9.
View
16.
Lan J, Zeng R, Li Z, Wu Y, Liu L, Chen L
. CD44-Targeted Photoactivatable Polymeric Nanosystem with On-Demand Drug Release as a "Photoactivatable Bomb" for Combined Photodynamic Therapy-Chemotherapy of Cancer. ACS Appl Mater Interfaces. 2023; 15(29):34554-34569.
DOI: 10.1021/acsami.3c05645.
View
17.
Heng H, Song G, Cai X, Sun J, Du K, Zhang X
. Intrinsic Mitochondrial Reactive Oxygen Species (ROS) Activate the In Situ Synthesis of Trimethine Cyanines in Cancer Cells. Angew Chem Int Ed Engl. 2022; 61(38):e202203444.
DOI: 10.1002/anie.202203444.
View
18.
Li M, Gebremedhin K, Ma D, Pu Z, Xiong T, Xu Y
. Conditionally Activatable Photoredox Catalysis in Living Systems. J Am Chem Soc. 2021; 144(1):163-173.
DOI: 10.1021/jacs.1c07372.
View
19.
Hong E, Choi D, Shim M
. Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. Acta Pharm Sin B. 2016; 6(4):297-307.
PMC: 4951583.
DOI: 10.1016/j.apsb.2016.01.007.
View
20.
Hanahan D, Weinberg R
. Hallmarks of cancer: the next generation. Cell. 2011; 144(5):646-74.
DOI: 10.1016/j.cell.2011.02.013.
View