» Articles » PMID: 22965062

Lessons from Human Teratomas to Guide Development of Safe Stem Cell Therapies

Overview
Journal Nat Biotechnol
Specialty Biotechnology
Date 2012 Sep 12
PMID 22965062
Citations 93
Authors
Affiliations
Soon will be listed here.
Abstract

The potential for the formation of teratomas or other neoplasms is a major safety roadblock to clinical application of pluripotent stem cell therapies. Preclinical assessment of the risk of tumor formation in this context poses considerable scientific and regulatory challenges, especially because animal xenograft models may not properly reflect the long-term tumorigenic potential of human cells. A better understanding of the biology of spontaneously occurring teratomas and related tumors in humans can help to guide efforts to assess and minimize the potential hazards of embryonic stem cell or induced pluripotent stem cell therapeutics. Here we review the features of teratomas derived experimentally from human pluripotent stem cells and argue that they most closely resemble spontaneous benign teratomas that occur early in both mouse and human life. The natural history and pathology of these spontaneously occurring teratomas provide important clues for preclinical safety assessment and patient monitoring in trials of stem cell therapies.

Citing Articles

models of leukemia development: the role of very small leukemic stem-like cells in the cellular transformation cascade.

Lica J, Jakobkiewicz-Banecka J, Hellmann A Front Cell Dev Biol. 2025; 12():1463807.

PMID: 39830209 PMC: 11740207. DOI: 10.3389/fcell.2024.1463807.


Pre-clinical evaluation of the efficacy and safety of human induced pluripotent stem cell-derived cardiomyocyte patch.

Miyagawa S, Kawamura T, Ito E, Takeda M, Iseoka H, Yokoyama J Stem Cell Res Ther. 2024; 15(1):73.

PMID: 38475911 PMC: 10935836. DOI: 10.1186/s13287-024-03690-8.


Identification of RNA-based cell-type markers for stem-cell manufacturing systems with a statistical scoring function.

Shi Y, Yang W, Lin H, Han L, Cai A, Saraf R Gene Rep. 2024; 34.

PMID: 38351912 PMC: 10861185. DOI: 10.1016/j.genrep.2023.101869.


Salivary Gland Bioengineering.

Rose S, Larsen M, Xie Y, Sharfstein S Bioengineering (Basel). 2024; 11(1).

PMID: 38247905 PMC: 10813147. DOI: 10.3390/bioengineering11010028.


Fluorescence-Based Mono- and Multimodal Imaging for In Vivo Tracking of Mesenchymal Stem Cells.

Yun W, Cho H, Jeon S, Lim D, Kim K Biomolecules. 2023; 13(12).

PMID: 38136656 PMC: 10742164. DOI: 10.3390/biom13121787.


References
1.
Wermann H, Stoop H, Gillis A, Honecker F, van Gurp R, Ammerpohl O . Global DNA methylation in fetal human germ cells and germ cell tumours: association with differentiation and cisplatin resistance. J Pathol. 2010; 221(4):433-42. DOI: 10.1002/path.2725. View

2.
Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M . Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature. 2009; 460(7259):1132-5. PMC: 2917235. DOI: 10.1038/nature08235. View

3.
Gertow K, Wolbank S, Rozell B, Sugars R, Andang M, Parish C . Organized development from human embryonic stem cells after injection into immunodeficient mice. Stem Cells Dev. 2004; 13(4):421-35. DOI: 10.1089/scd.2004.13.421. View

4.
Schneider D, Schuster A, Fritsch M, Calaminus G, Gobel U, Harms D . Genetic analysis of mediastinal nonseminomatous germ cell tumors in children and adolescents. Genes Chromosomes Cancer. 2002; 34(1):115-25. DOI: 10.1002/gcc.10053. View

5.
West J, Park I, Daley G, Geijsen N . In vitro generation of germ cells from murine embryonic stem cells. Nat Protoc. 2007; 1(4):2026-36. DOI: 10.1038/nprot.2006.303. View