» Articles » PMID: 22948826

The Allosteric Vestibule of a Seven Transmembrane Helical Receptor Controls G-protein Coupling

Abstract

Seven transmembrane helical receptors (7TMRs) modulate cell function via different types of G proteins, often in a ligand-specific manner. Class A 7TMRs harbour allosteric vestibules in the entrance of their ligand-binding cavities, which are in the focus of current drug discovery. However, their biological function remains enigmatic. Here we present a new strategy for probing and manipulating conformational transitions in the allosteric vestibule of label-free 7TMRs using the M(2) acetylcholine receptor as a paradigm. We designed dualsteric agonists as 'tailor-made' chemical probes to trigger graded receptor activation from the acetylcholine-binding site while simultaneously restricting spatial flexibility of the receptor's allosteric vestibule. Our findings reveal for the first time that a 7TMR's allosteric vestibule controls the extent of receptor movement to govern a hierarchical order of G-protein coupling. This is a new concept assigning a biological role to the allosteric vestibule for controlling fidelity of 7TMR signalling.

Citing Articles

Exploring Hypertension: The Role of AT1 Receptors, Sartans, and Lipid Bilayers.

Georgiou N, Chontzopoulou E, Routsi E, Stavrakaki I, Petsas E, Zoupanou N ACS Omega. 2024; 9(45):44876-44890.

PMID: 39554401 PMC: 11561769. DOI: 10.1021/acsomega.4c06351.


Positive allosteric modulation of a GPCR ternary complex.

Burger W, Draper-Joyce C, Valant C, Christopoulos A, Thal D Sci Adv. 2024; 10(37):eadp7040.

PMID: 39259792 PMC: 11389776. DOI: 10.1126/sciadv.adp7040.


Agonist-selective activation of individual G-proteins by muscarinic receptors.

Nelic D, Chetverikov N, Hochmalova M, Diaz C, Dolezal V, Boulos J Sci Rep. 2024; 14(1):9652.

PMID: 38671143 PMC: 11053168. DOI: 10.1038/s41598-024-60259-4.


Peptide-derived ligands for the discovery of safer opioid analgesics.

Eliasof A, Liu-Chen L, Li Y Drug Discov Today. 2024; 29(5):103950.

PMID: 38514040 PMC: 11127667. DOI: 10.1016/j.drudis.2024.103950.


Analysing the effect caused by increasing the molecular volume in M1-AChR receptor agonists and antagonists: a structural and computational study.

Montejo-Lopez W, Sampieri-Cabrera R, Nicolas-Vazquez M, Aceves-Hernandez J, Razo-Hernandez R RSC Adv. 2024; 14(13):8615-8640.

PMID: 38495977 PMC: 10938299. DOI: 10.1039/d3ra07380g.


References
1.
Deupi X, Kobilka B . Energy landscapes as a tool to integrate GPCR structure, dynamics, and function. Physiology (Bethesda). 2010; 25(5):293-303. PMC: 3056154. DOI: 10.1152/physiol.00002.2010. View

2.
Schroder R, Janssen N, Schmidt J, Kebig A, Merten N, Hennen S . Deconvolution of complex G protein-coupled receptor signaling in live cells using dynamic mass redistribution measurements. Nat Biotechnol. 2010; 28(9):943-9. DOI: 10.1038/nbt.1671. View

3.
Schroder R, Merten N, Mathiesen J, Martini L, Kruljac-Letunic A, Krop F . The C-terminal tail of CRTH2 is a key molecular determinant that constrains Galphai and downstream signaling cascade activation. J Biol Chem. 2008; 284(2):1324-36. DOI: 10.1074/jbc.M806867200. View

4.
Reiter E, Ahn S, Shukla A, Lefkowitz R . Molecular mechanism of β-arrestin-biased agonism at seven-transmembrane receptors. Annu Rev Pharmacol Toxicol. 2011; 52:179-97. PMC: 3628752. DOI: 10.1146/annurev.pharmtox.010909.105800. View

5.
Haga K, Haga T, ICHIYAMA A, Katada T, Kurose H, Ui M . Functional reconstitution of purified muscarinic receptors and inhibitory guanine nucleotide regulatory protein. Nature. 1985; 316(6030):731-3. DOI: 10.1038/316731a0. View