» Articles » PMID: 22809139

Regulation of Cell Behavior and Tissue Patterning by Bioelectrical Signals: Challenges and Opportunities for Biomedical Engineering

Overview
Publisher Annual Reviews
Date 2012 Jul 20
PMID 22809139
Citations 94
Authors
Affiliations
Soon will be listed here.
Abstract

Achieving control over cell behavior and pattern formation requires molecular-level understanding of regulatory mechanisms. Alongside transcriptional networks and biochemical gradients, there functions an important system of cellular communication and control: transmembrane voltage gradients (V(mem)). Bioelectrical signals encoded in spatiotemporal changes of V(mem) control cell proliferation, migration, and differentiation. Moreover, endogenous bioelectrical gradients serve as instructive cues mediating anatomical polarity and other organ-level aspects of morphogenesis. In the past decade, significant advances in molecular physiology have enabled the development of new genetic and biophysical tools for the investigation and functional manipulation of bioelectric cues. Recent data implicate V(mem) as a crucial epigenetic regulator of patterning events in embryogenesis, regeneration, and cancer. We review new conceptual and methodological developments in this fascinating field. Bioelectricity offers a novel way of quantitatively understanding regulation of growth and form in vivo, and it reveals tractable, powerful control points that will enable truly transformative applications in bioengineering, regenerative medicine, and synthetic biology.

Citing Articles

Advances in Porous Structure Design for Enhanced Piezoelectric and Triboelectric Nanogenerators: A Comprehensive Review.

Turar Z, Sembay M, Mubarak A, Belgibayeva A, Kong L, Kalimuldina G Glob Chall. 2025; 9(1):2400224.

PMID: 39802044 PMC: 11717670. DOI: 10.1002/gch2.202400224.


Exploring Ion Channel Magnetic Pharmacology: Are Magnetic Cues a Viable Alternative to Ion Channel Drugs?.

Zablotskii V, Polyakova T, Dejneka A Bioessays. 2024; 47(3):e202400200.

PMID: 39651810 PMC: 11848120. DOI: 10.1002/bies.202400200.


Biodielectrics: old wine in a new bottle?.

Barnana H, Tofail S, Roy K, OMahony C, Hidasi Turinicova V, Gregor M Front Bioeng Biotechnol. 2024; 12:1458668.

PMID: 39420968 PMC: 11483890. DOI: 10.3389/fbioe.2024.1458668.


Enhancing cellular behavior in repaired tissue via silk fibroin-integrated triboelectric nanogenerators.

Li Z, Xu S, Xu Z, Shu S, Liu G, Zhou J Microsyst Nanoeng. 2024; 10:68.

PMID: 38799404 PMC: 11126623. DOI: 10.1038/s41378-024-00694-5.


Bioelectric medicine: unveiling the therapeutic potential of micro-current stimulation.

Lee H, Cho S, Kim D, Lee T, Kim H Biomed Eng Lett. 2024; 14(3):367-392.

PMID: 38645592 PMC: 11026362. DOI: 10.1007/s13534-024-00366-3.


References
1.
Sisken B, Walker J, Orgel M . Prospects on clinical applications of electrical stimulation for nerve regeneration. J Cell Biochem. 1993; 51(4):404-9. DOI: 10.1002/jcb.2400510404. View

2.
Yan X, Han J, Zhang Z, Wang J, Cheng Q, Gao K . Lung cancer A549 cells migrate directionally in DC electric fields with polarized and activated EGFRs. Bioelectromagnetics. 2008; 30(1):29-35. DOI: 10.1002/bem.20436. View

3.
Huttenlocher A, Horwitz A . Wound healing with electric potential. N Engl J Med. 2007; 356(3):303-4. DOI: 10.1056/NEJMcibr066496. View

4.
Purnick P, Weiss R . The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol. 2009; 10(6):410-22. DOI: 10.1038/nrm2698. View

5.
STILLWELL E, Cone C, Cone Jr C . Stimulation of DNA synthesis in CNS neurones by sustained depolarisation. Nat New Biol. 1973; 246(152):110-1. DOI: 10.1038/newbio246110a0. View