» Articles » PMID: 22780094

Assessing Graphene Nanopores for Sequencing DNA

Overview
Journal Nano Lett
Specialty Biotechnology
Date 2012 Jul 12
PMID 22780094
Citations 54
Authors
Affiliations
Soon will be listed here.
Abstract

Using all-atom molecular dynamics and atomic-resolution Brownian dynamics, we simulate the translocation of single-stranded DNA through graphene nanopores and characterize the ionic current blockades produced by DNA nucleotides. We find that transport of single DNA strands through graphene nanopores may occur in single nucleotide steps. For certain pore geometries, hydrophobic interactions with the graphene membrane lead to a dramatic reduction in the conformational fluctuations of the nucleotides in the nanopores. Furthermore, we show that ionic current blockades produced by different DNA nucleotides are, in general, indicative of the nucleotide type, but very sensitive to the orientation of the nucleotides in the nanopore. Taken together, our simulations suggest that strand sequencing of DNA by measuring the ionic current blockades in graphene nanopores may be possible, given that the conformation of DNA nucleotides in the nanopore can be controlled through precise engineering of the nanopore surface.

Citing Articles

Graphene Nanopore Fabrication and Applications.

Sun Q, Dai M, Hong J, Feng S, Wang C, Yuan Z Int J Mol Sci. 2025; 26(4).

PMID: 40004171 PMC: 11855882. DOI: 10.3390/ijms26041709.


Graphite-Based Bio-Mimetic Nanopores for Protein Sequencing and Beyond.

Das C, Fyta M Small. 2024; 21(2):e2407647.

PMID: 39511871 PMC: 11735877. DOI: 10.1002/smll.202407647.


Interplay of graphene-DNA interactions: Unveiling sensing potential of graphene materials.

Gao Y, Wang Y Appl Phys Rev. 2024; 11(1).

PMID: 38784221 PMC: 11115426. DOI: 10.1063/5.0171364.


Controllable Fabrication of Sub-10 nm Graphene Nanopores via Helium Ion Microscopy and DNA Detection.

Yuan Z, Lin Y, Hu J, Wang C Biosensors (Basel). 2024; 14(4).

PMID: 38667151 PMC: 11048673. DOI: 10.3390/bios14040158.


Label-Free Imaging of DNA Interactions with 2D Materials.

Sulzle J, Yang W, Shimoda Y, Ronceray N, Mayner E, Manley S ACS Photonics. 2024; 11(2):737-744.

PMID: 38405387 PMC: 10885193. DOI: 10.1021/acsphotonics.3c01604.


References
1.
Wanunu M, Bhattacharya S, Xie Y, Tor Y, Aksimentiev A, Drndic M . Nanopore analysis of individual RNA/antibiotic complexes. ACS Nano. 2011; 5(12):9345-53. PMC: 3253136. DOI: 10.1021/nn203764j. View

2.
Xie P, Xiong Q, Fang Y, Qing Q, Lieber C . Local electrical potential detection of DNA by nanowire-nanopore sensors. Nat Nanotechnol. 2011; 7(2):119-25. PMC: 3273648. DOI: 10.1038/nnano.2011.217. View

3.
Schneider G, Kowalczyk S, Calado V, Pandraud G, Zandbergen H, Vandersypen L . DNA translocation through graphene nanopores. Nano Lett. 2010; 10(8):3163-7. DOI: 10.1021/nl102069z. View

4.
Aksimentiev A . Deciphering ionic current signatures of DNA transport through a nanopore. Nanoscale. 2010; 2(4):468-83. PMC: 2909628. DOI: 10.1039/b9nr00275h. View

5.
Min S, Kim W, Cho Y, Kim K . Fast DNA sequencing with a graphene-based nanochannel device. Nat Nanotechnol. 2011; 6(3):162-5. DOI: 10.1038/nnano.2010.283. View