» Articles » PMID: 22165962

Stacked Graphene-Al2O3 Nanopore Sensors for Sensitive Detection of DNA and DNA-protein Complexes

Overview
Journal ACS Nano
Specialty Biotechnology
Date 2011 Dec 15
PMID 22165962
Citations 51
Authors
Affiliations
Soon will be listed here.
Abstract

We report the development of a multilayered graphene-Al(2)O(3) nanopore platform for the sensitive detection of DNA and DNA-protein complexes. Graphene-Al(2)O(3) nanolaminate membranes are formed by sequentially depositing layers of graphene and Al(2)O(3), with nanopores being formed in these membranes using an electron-beam sculpting process. The resulting nanopores are highly robust, exhibit low electrical noise (significantly lower than nanopores in pure graphene), are highly sensitive to electrolyte pH at low KCl concentrations (attributed to the high buffer capacity of Al(2)O(3)), and permit the electrical biasing of the embedded graphene electrode, thereby allowing for three terminal nanopore measurements. In proof-of-principle biomolecule sensing experiments, the folded and unfolded transport of single DNA molecules and RecA-coated DNA complexes could be discerned with high temporal resolution. The process described here also enables nanopore integration with new graphene-based structures, including nanoribbons and nanogaps, for single-molecule DNA sequencing and medical diagnostic applications.

Citing Articles

Interplay of graphene-DNA interactions: Unveiling sensing potential of graphene materials.

Gao Y, Wang Y Appl Phys Rev. 2024; 11(1).

PMID: 38784221 PMC: 11115426. DOI: 10.1063/5.0171364.


Controllable Fabrication of Sub-10 nm Graphene Nanopores via Helium Ion Microscopy and DNA Detection.

Yuan Z, Lin Y, Hu J, Wang C Biosensors (Basel). 2024; 14(4).

PMID: 38667151 PMC: 11048673. DOI: 10.3390/bios14040158.


Fast Fabrication Nanopores on a PMMA Membrane by a Local High Electric Field Controlled Breakdown.

Fang S, Zeng D, He S, Li Y, Pang Z, Wang Y Sensors (Basel). 2024; 24(7).

PMID: 38610321 PMC: 11013984. DOI: 10.3390/s24072109.


Scaling of ionic conductance in a fluctuating single-layer nanoporous membrane.

Noh Y, Aluru N Sci Rep. 2023; 13(1):19813.

PMID: 37957224 PMC: 10643653. DOI: 10.1038/s41598-023-46962-8.


Aprotic Solvent Accumulation Amplifies Ion Current Rectification in Conical Nanopores.

Farrell E, Duleba D, Johnson R J Phys Chem B. 2022; 126(30):5689-5694.

PMID: 35867912 PMC: 9358645. DOI: 10.1021/acs.jpcb.2c03172.


References
1.
Li J, Gershow M, Stein D, Brandin E, Golovchenko J . DNA molecules and configurations in a solid-state nanopore microscope. Nat Mater. 2003; 2(9):611-5. DOI: 10.1038/nmat965. View

2.
Wood J, Schmucker S, Lyons A, Pop E, Lyding J . Effects of polycrystalline cu substrate on graphene growth by chemical vapor deposition. Nano Lett. 2011; 11(11):4547-54. DOI: 10.1021/nl201566c. View

3.
Valota A, Kinloch I, Novoselov K, Casiraghi C, Eckmann A, Hill E . Electrochemical behavior of monolayer and bilayer graphene. ACS Nano. 2011; 5(11):8809-15. DOI: 10.1021/nn202878f. View

4.
Schneider G, Kowalczyk S, Calado V, Pandraud G, Zandbergen H, Vandersypen L . DNA translocation through graphene nanopores. Nano Lett. 2010; 10(8):3163-7. DOI: 10.1021/nl102069z. View

5.
Liao A, Wu J, Wang X, Tahy K, Jena D, Dai H . Thermally limited current carrying ability of graphene nanoribbons. Phys Rev Lett. 2011; 106(25):256801. DOI: 10.1103/PhysRevLett.106.256801. View