» Articles » PMID: 22770218

A CXCL1 Paracrine Network Links Cancer Chemoresistance and Metastasis

Overview
Journal Cell
Publisher Cell Press
Specialty Cell Biology
Date 2012 Jul 10
PMID 22770218
Citations 615
Authors
Affiliations
Soon will be listed here.
Abstract

Metastasis and chemoresistance in cancer are linked phenomena, but the molecular basis for this link is unknown. We uncovered a network of paracrine signals between carcinoma, myeloid, and endothelial cells that drives both processes in breast cancer. Cancer cells that overexpress CXCL1 and 2 by transcriptional hyperactivation or 4q21 amplification are primed for survival in metastatic sites. CXCL1/2 attract CD11b(+)Gr1(+) myeloid cells into the tumor, which produce chemokines including S100A8/9 that enhance cancer cell survival. Although chemotherapeutic agents kill cancer cells, these treatments trigger a parallel stromal reaction leading to TNF-α production by endothelial and other stromal cells. TNF-α via NF-kB heightens the CXCL1/2 expression in cancer cells, thus amplifying the CXCL1/2-S100A8/9 loop and causing chemoresistance. CXCR2 blockers break this cycle, augmenting the efficacy of chemotherapy against breast tumors and particularly against metastasis. This network of endothelial-carcinoma-myeloid signaling interactions provides a mechanism linking chemoresistance and metastasis, with opportunities for intervention.

Citing Articles

Potential biological roles of exosomal non-coding RNAs in breast cancer.

Li X, Gong J, Ni X, Yin J, Zhang Y, Lv Z FASEB J. 2025; 39(6):e70456.

PMID: 40079186 PMC: 11904755. DOI: 10.1096/fj.202500022R.


Nutrients Lowering Obesity-Linked Chemokines Blamable for Metastasis.

Ion G, Bostan M, Hardman W, Putt McFarland M, Bleotu C, Radu N Int J Mol Sci. 2025; 26(5).

PMID: 40076892 PMC: 11899810. DOI: 10.3390/ijms26052275.


Genetic determinants of inflammatory cytokines and their causal relationship with inflammatory disorders of breast: a two-sample Mendelian randomization study.

Wei H, Ge H, Qian Y, Li B Sci Rep. 2025; 15(1):7300.

PMID: 40025158 PMC: 11873064. DOI: 10.1038/s41598-025-91723-4.


Omega-3 fatty acids: molecular weapons against chemoresistance in breast cancer.

Marchio V, Augimeri G, Morelli C, Vivacqua A, Giordano C, Catalano S Cell Mol Biol Lett. 2025; 30(1):11.

PMID: 39863855 PMC: 11762563. DOI: 10.1186/s11658-025-00694-x.


S100A8/A9 innate immune signaling as a distinct mechanism driving progression of smoking-related breast cancers.

Mugisha S, Baba S, Labhsetwar S, Dave D, Zakeri A, Klemke R Oncogene. 2025; .

PMID: 39856330 DOI: 10.1038/s41388-025-03276-5.


References
1.
Hsieh H, Schafer B, Sasaki N, Heizmann C . Expression analysis of S100 proteins and RAGE in human tumors using tissue microarrays. Biochem Biophys Res Commun. 2003; 307(2):375-81. DOI: 10.1016/s0006-291x(03)01190-2. View

2.
Hobbs J, May R, Tanousis K, McNeill E, Mathies M, Gebhardt C . Myeloid cell function in MRP-14 (S100A9) null mice. Mol Cell Biol. 2003; 23(7):2564-76. PMC: 150714. DOI: 10.1128/MCB.23.7.2564-2576.2003. View

3.
Roodhart J, Daenen L, Stigter E, Prins H, Gerrits J, Houthuijzen J . Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids. Cancer Cell. 2011; 20(3):370-83. DOI: 10.1016/j.ccr.2011.08.010. View

4.
Tan W, Zhang W, Strasner A, Grivennikov S, Cheng J, Hoffman R . Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature. 2011; 470(7335):548-53. PMC: 3166217. DOI: 10.1038/nature09707. View

5.
Pegram M, Konecny G, OCallaghan C, Beryt M, Pietras R, Slamon D . Rational combinations of trastuzumab with chemotherapeutic drugs used in the treatment of breast cancer. J Natl Cancer Inst. 2004; 96(10):739-49. DOI: 10.1093/jnci/djh131. View