Choi Y, Kim D, Lee S, Shin Y, Lee J
Nucleic Acids Res. 2025; 53(1.
PMID: 39777466
PMC: 11705086.
DOI: 10.1093/nar/gkae1292.
Wang J, Wang H, Wang J, Shang G
Biotechnol Lett. 2024; 47(1):14.
PMID: 39725731
DOI: 10.1007/s10529-024-03554-4.
Gao H, Qiu Z, Wang X, Zhang X, Zhang Y, Dai J
Eng Microbiol. 2024; 4(1):100115.
PMID: 39628784
PMC: 11611031.
DOI: 10.1016/j.engmic.2023.100115.
James J, Dai J, Chew W, Cai Y
Nat Rev Genet. 2024; .
PMID: 39506144
DOI: 10.1038/s41576-024-00786-y.
Ciaccia P, Liang Z, Schweitzer A, Metzner E, Isaacs F
Nat Commun. 2024; 15(1):5218.
PMID: 38890276
PMC: 11189492.
DOI: 10.1038/s41467-024-49365-z.
Strategies to identify and edit improvements in synthetic genome segments episomally.
Rudolph A, Nyerges A, Chiappino-Pepe A, Landon M, Baas-Thomas M, Church G
Nucleic Acids Res. 2023; 51(18):10094-10106.
PMID: 37615546
PMC: 10570025.
DOI: 10.1093/nar/gkad692.
Lambda Red Recombineering of Bacteriophage in the Lysogenic State.
Tridgett M, Ababi M, Jaramillo A
Methods Mol Biol. 2022; 2479:11-19.
PMID: 35583729
DOI: 10.1007/978-1-0716-2233-9_2.
Recombineering and MAGE.
Wannier T, Ciaccia P, Ellington A, Filsinger G, Isaacs F, Javanmardi K
Nat Rev Methods Primers. 2022; 1.
PMID: 35540496
PMC: 9083505.
DOI: 10.1038/s43586-020-00006-x.
Improved dsDNA recombineering enables versatile multiplex genome engineering of kilobase-scale sequences in diverse bacteria.
Wang X, Zheng W, Zhou H, Tu Q, Tang Y, Stewart A
Nucleic Acids Res. 2021; 50(3):e15.
PMID: 34792175
PMC: 8860599.
DOI: 10.1093/nar/gkab1076.
Multiplexed genomic encoding of non-canonical amino acids for labeling large complexes.
Desai B, Gonzalez Jr R
Nat Chem Biol. 2020; 16(10):1129-1135.
PMID: 32690942
PMC: 7982790.
DOI: 10.1038/s41589-020-0599-5.
High-Efficiency Multi-site Genomic Editing of Pseudomonas putida through Thermoinducible ssDNA Recombineering.
Aparicio T, Nyerges A, Martinez-Garcia E, de Lorenzo V
iScience. 2020; 23(3):100946.
PMID: 32179472
PMC: 7068128.
DOI: 10.1016/j.isci.2020.100946.
Synthetic evolution.
Simon A, dOelsnitz S, Ellington A
Nat Biotechnol. 2019; 37(7):730-743.
PMID: 31209374
DOI: 10.1038/s41587-019-0157-4.
Codon usage of highly expressed genes affects proteome-wide translation efficiency.
Frumkin I, Lajoie M, Gregg C, Hornung G, Church G, Pilpel Y
Proc Natl Acad Sci U S A. 2018; 115(21):E4940-E4949.
PMID: 29735666
PMC: 6003480.
DOI: 10.1073/pnas.1719375115.
Precise Editing at DNA Replication Forks Enables Multiplex Genome Engineering in Eukaryotes.
Barbieri E, Muir P, Akhuetie-Oni B, Yellman C, Isaacs F
Cell. 2017; 171(6):1453-1467.e13.
PMID: 29153834
PMC: 5995112.
DOI: 10.1016/j.cell.2017.10.034.
Efficient engineering of chromosomal ribosome binding site libraries in mismatch repair proficient Escherichia coli.
Oesterle S, Gerngross D, Schmitt S, Roberts T, Panke S
Sci Rep. 2017; 7(1):12327.
PMID: 28951570
PMC: 5615074.
DOI: 10.1038/s41598-017-12395-3.
Automated electrotransformation of on a digital microfluidic platform using bioactivated magnetic beads.
Moore J, Nemat-Gorgani M, Madison A, Sandahl M, Punnamaraju S, Eckhardt A
Biomicrofluidics. 2017; 11(1):014110.
PMID: 28191268
PMC: 5291792.
DOI: 10.1063/1.4975391.
Emergent rules for codon choice elucidated by editing rare arginine codons in Escherichia coli.
Napolitano M, Landon M, Gregg C, Lajoie M, Govindarajan L, Mosberg J
Proc Natl Acad Sci U S A. 2016; 113(38):E5588-97.
PMID: 27601680
PMC: 5035903.
DOI: 10.1073/pnas.1605856113.
Genome engineering Escherichia coli for L-DOPA overproduction from glucose.
Wei T, Cheng B, Liu J
Sci Rep. 2016; 6:30080.
PMID: 27417146
PMC: 4945936.
DOI: 10.1038/srep30080.
Engineering microbial hosts for production of bacterial natural products.
Zhang M, Wang Y, Lui Ang E, Zhao H
Nat Prod Rep. 2016; 33(8):963-87.
PMID: 27072804
PMC: 4963277.
DOI: 10.1039/c6np00017g.
Pathogen receptor discovery with a microfluidic human membrane protein array.
Glick Y, Ben-Ari Y, Drayman N, Pellach M, Neveu G, Boonyaratanakornkit J
Proc Natl Acad Sci U S A. 2016; 113(16):4344-9.
PMID: 27044079
PMC: 4843447.
DOI: 10.1073/pnas.1518698113.