» Articles » PMID: 22563605

A Universal Description for the Experimental Behavior of Salt-(in)dependent Oligocation-induced DNA Condensation

Overview
Specialty Biochemistry
Date 2012 May 8
PMID 22563605
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

We report a systematic study of the condensation of plasmid DNA by oligocations with variation of the charge, Z, from +3 to +31. The oligocations include a series of synthetic linear ε-oligo(L-lysines), (denoted εKn, n = 3–10, 31; n is the number of lysines with the ligand charge Z = n+1) and branched α-substituted homologues of εK10: εYK10, εLK10 (Z = +11); εRK10, εYRK10 and εLYRK10 (Z = +21). Data were obtained by light scattering, UV absorption monitored precipitation assay and isothermal titration calorimetry in a wide range concentrations of DNA and monovalent salt (KCl, CKCl). The dependence of EC50 (ligand concentration at the midpoint of DNA condensation) on C(KCl) shows the existence of a salt-independent regime at low C(KCl) and a salt-dependent regime with a steep rise of EC50 with increase of C(KCl). Increase of the ligand charge shifts the transition from the salt-independent to salt-dependent regime to higher C(KCl). A novel and simple relationship describing the EC50 dependence on DNA concentration, charge of the ligand and the salt-dependent dissociation constant of the ligand–DNA complex is derived. For the ε-oligolysines εK6–εK10, the experimental dependencies of EC50 on C(KCl) and Z are well-described by an equation with a common set of parameters. Implications from our findings for understanding DNA condensation in chromatin are discussed.

Citing Articles

Reconstituted TAD-size chromatin fibers feature heterogeneous nucleosome clusters.

Korolev N, Zinchenko A, Soman A, Chen Q, Wong S, Berezhnoy N Sci Rep. 2022; 12(1):15558.

PMID: 36114220 PMC: 9481575. DOI: 10.1038/s41598-022-19471-3.


A Bottom-Up Coarse-Grained Model for Nucleosome-Nucleosome Interactions with Explicit Ions.

Sun T, Minhas V, Mirzoev A, Korolev N, Lyubartsev A, Nordenskiold L J Chem Theory Comput. 2022; 18(6):3948-3960.

PMID: 35580041 PMC: 9202350. DOI: 10.1021/acs.jctc.2c00083.


Biodegradable Polymers for Gene Delivery.

Thomas T, Tajmir-Riahi H, Pillai C Molecules. 2019; 24(20).

PMID: 31627389 PMC: 6832905. DOI: 10.3390/molecules24203744.


A multiscale analysis of DNA phase separation: from atomistic to mesoscale level.

Sun T, Mirzoev A, Minhas V, Korolev N, Lyubartsev A, Nordenskiold L Nucleic Acids Res. 2019; 47(11):5550-5562.

PMID: 31106383 PMC: 6582353. DOI: 10.1093/nar/gkz377.


A systematic analysis of nucleosome core particle and nucleosome-nucleosome stacking structure.

Korolev N, Lyubartsev A, Nordenskiold L Sci Rep. 2018; 8(1):1543.

PMID: 29367745 PMC: 5784010. DOI: 10.1038/s41598-018-19875-0.


References
1.
Todd B, Parsegian V, Shirahata A, Thomas T, Rau D . Attractive forces between cation condensed DNA double helices. Biophys J. 2008; 94(12):4775-82. PMC: 2397328. DOI: 10.1529/biophysj.107.127332. View

2.
Matulis D, Rouzina I, Bloomfield V . Thermodynamics of DNA binding and condensation: isothermal titration calorimetry and electrostatic mechanism. J Mol Biol. 2000; 296(4):1053-63. DOI: 10.1006/jmbi.1999.3470. View

3.
Thomas T, Thomas T . Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol Life Sci. 2001; 58(2):244-58. PMC: 11146526. DOI: 10.1007/PL00000852. View

4.
Record Jr M, Lohman M, De Haseth P . Ion effects on ligand-nucleic acid interactions. J Mol Biol. 1976; 107(2):145-58. DOI: 10.1016/s0022-2836(76)80023-x. View

5.
Mascotti D, Lohman T . Thermodynamics of oligoarginines binding to RNA and DNA. Biochemistry. 1997; 36(23):7272-9. DOI: 10.1021/bi970272n. View