» Articles » PMID: 35580041

A Bottom-Up Coarse-Grained Model for Nucleosome-Nucleosome Interactions with Explicit Ions

Overview
Specialties Biochemistry
Chemistry
Date 2022 May 17
PMID 35580041
Authors
Affiliations
Soon will be listed here.
Abstract

The nucleosome core particle (NCP) is a large complex of 145-147 base pairs of DNA and eight histone proteins and is the basic building block of chromatin that forms the chromosomes. Here, we develop a coarse-grained (CG) model of the NCP derived through a systematic bottom-up approach based on underlying all-atom MD simulations to compute the necessary CG interactions. The model produces excellent agreement with known structural features of the NCP and gives a realistic description of the nucleosome-nucleosome attraction in the presence of multivalent cations (Mg(HO) or Co(NH)) for systems comprising 20 NCPs. The results of the simulations reveal structural details of the NCP-NCP interactions unavailable from experimental approaches, and this model opens the prospect for the rigorous modeling of chromatin fibers.

Citing Articles

The impact of charge regulation and ionic intranuclear environment on the nucleosome core particle.

Nap R, Carillo Gonzalez P, Coraor A, Virk R, de Pablo J, Backman V J Chem Phys. 2024; 161(23).

PMID: 39704570 PMC: 11884865. DOI: 10.1063/5.0241529.


Unveiling Nucleosome Dynamics: A Comparative Study Using All-Atom and Coarse-Grained Simulations Enhanced by Principal Component Analysis.

Ghosh Moulick A, Patel R, Onyema A, Loverde S bioRxiv. 2024; .

PMID: 39574694 PMC: 11580959. DOI: 10.1101/2024.11.05.622089.


A statistical mechanics investigation of unfolded protein response across organisms.

Luchetti N, Smith K, Matarrese M, Loppini A, Filippi S, Chiodo L Sci Rep. 2024; 14(1):27658.

PMID: 39532983 PMC: 11557608. DOI: 10.1038/s41598-024-79086-8.


Integrative Modeling of 3D Genome Organization by Bayesian Molecular Dynamics Simulations with Hi-C Metainference.

Brandani G Methods Mol Biol. 2024; 2856:309-324.

PMID: 39283461 DOI: 10.1007/978-1-0716-4136-1_19.


From Nucleosomes to Compartments: Physicochemical Interactions Underlying Chromatin Organization.

Liu S, Athreya A, Lao Z, Zhang B Annu Rev Biophys. 2024; 53(1):221-245.

PMID: 38346246 PMC: 11369498. DOI: 10.1146/annurev-biophys-030822-032650.


References
1.
Korolev N, Allahverdi A, Yang Y, Fan Y, Lyubartsev A, Nordenskiold L . Electrostatic origin of salt-induced nucleosome array compaction. Biophys J. 2010; 99(6):1896-905. PMC: 2941033. DOI: 10.1016/j.bpj.2010.07.017. View

2.
Mangenot S, Leforestier A, Vachette P, Durand D, Livolant F . Salt-induced conformation and interaction changes of nucleosome core particles. Biophys J. 2001; 82(1 Pt 1):345-56. PMC: 1302474. DOI: 10.1016/S0006-3495(02)75399-X. View

3.
Kepper N, Foethke D, Stehr R, Wedemann G, Rippe K . Nucleosome geometry and internucleosomal interactions control the chromatin fiber conformation. Biophys J. 2008; 95(8):3692-705. PMC: 2553103. DOI: 10.1529/biophysj.107.121079. View

4.
Farr S, Woods E, Joseph J, Garaizar A, Collepardo-Guevara R . Nucleosome plasticity is a critical element of chromatin liquid-liquid phase separation and multivalent nucleosome interactions. Nat Commun. 2021; 12(1):2883. PMC: 8129070. DOI: 10.1038/s41467-021-23090-3. View

5.
Moller J, Lequieu J, de Pablo J . The Free Energy Landscape of Internucleosome Interactions and Its Relation to Chromatin Fiber Structure. ACS Cent Sci. 2019; 5(2):341-348. PMC: 6396382. DOI: 10.1021/acscentsci.8b00836. View