» Articles » PMID: 26912166

A Route to Self-assemble Suspended DNA Nano-complexes

Overview
Journal Sci Rep
Specialty Science
Date 2016 Feb 26
PMID 26912166
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Highly charged polyelectrolytes can self-assemble in presence of condensing agents such as multivalent cations, amphiphilic molecules or proteins of opposite charge. Aside precipitation, the formation of soluble micro- and nano-particles has been reported in multiple systems. However a precise control of experimental conditions needed to achieve the desired structures has been so far hampered by the extreme sensitivity of the samples to formulation pathways. Herein we combine experiments and molecular modelling to investigate the detailed microscopic dynamics and the structure of self-assembled hexagonal bundles made of short dsDNA fragments complexed with small basic proteins. We suggest that inhomogeneous mixing conditions are required to form and stabilize charged self-assembled nano-aggregates in large excess of DNA. Our results should help re-interpreting puzzling behaviors reported for a large class of strongly charged polyelectrolyte systems.

Citing Articles

DNA-protamine condensates under low salt conditions: molecular dynamics simulation with a simple coarse-grained model focusing on electrostatic interactions.

Jang Y, Raspaud E, Lansac Y Nanoscale Adv. 2023; 5(18):4798-4808.

PMID: 37705794 PMC: 10496769. DOI: 10.1039/d2na00847e.


Controlling the Formation of Polyelectrolyte Complex Nanoparticles Using Programmable pH Reactions.

Sproncken C, Gumi-Audenis B, Foroutanparsa S, Magana J, Voets I Macromolecules. 2023; 56(1):226-233.

PMID: 36644553 PMC: 9835975. DOI: 10.1021/acs.macromol.2c01431.


Condensed Supramolecular Helices: The Twisted Sisters of DNA.

Du G, Belic D, Del Giudice A, Alfredsson V, Carnerup A, Zhu K Angew Chem Int Ed Engl. 2021; 61(4):e202113279.

PMID: 34757695 PMC: 9300030. DOI: 10.1002/anie.202113279.


Local structure of DNA toroids reveals curvature-dependent intermolecular forces.

Barberi L, Livolant F, Leforestier A, Lenz M Nucleic Acids Res. 2021; 49(7):3709-3718.

PMID: 33784405 PMC: 8053110. DOI: 10.1093/nar/gkab197.

References
1.
Hud N, Downing K . Cryoelectron microscopy of lambda phage DNA condensates in vitreous ice: the fine structure of DNA toroids. Proc Natl Acad Sci U S A. 2001; 98(26):14925-30. PMC: 64960. DOI: 10.1073/pnas.261560398. View

2.
Zidovska A, Evans H, Ewert K, Quispe J, Carragher B, Potter C . Liquid crystalline phases of dendritic lipid-DNA self-assemblies: lamellar, hexagonal, and DNA bundles. J Phys Chem B. 2009; 113(12):3694-703. PMC: 2858692. DOI: 10.1021/jp806863z. View

3.
Raspaud E, Olvera de la Cruz M, Sikorav J, Livolant F . Precipitation of DNA by polyamines: a polyelectrolyte behavior. Biophys J. 1998; 74(1):381-93. PMC: 1299390. DOI: 10.1016/S0006-3495(98)77795-1. View

4.
de Frutos M, Letellier L, Raspaud E . DNA ejection from bacteriophage T5: analysis of the kinetics and energetics. Biophys J. 2004; 88(2):1364-70. PMC: 1305138. DOI: 10.1529/biophysj.104.048785. View

5.
Korolev N, Berezhnoy N, Eom K, Tam J, Nordenskiold L . A universal description for the experimental behavior of salt-(in)dependent oligocation-induced DNA condensation. Nucleic Acids Res. 2012; 40(6):2808-21. PMC: 3729243. DOI: 10.1093/nar/gks214. View