» Articles » PMID: 22560997

Selenium Induces Cholinergic Motor Neuron Degeneration in Caenorhabditis Elegans

Overview
Journal Neurotoxicology
Date 2012 May 8
PMID 22560997
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

Selenium is an essential micronutrient required for cellular antioxidant systems, yet at higher doses it induces oxidative stress. Additionally, in vertebrates environmental exposures to toxic levels of selenium can cause paralysis and death. Here we show that selenium-induced oxidative stress leads to decreased cholinergic signaling and degeneration of cholinergic neurons required for movement and egg-laying in Caenorhabditis elegans. Exposure to high levels of selenium leads to proteolysis of a soluble muscle protein through mechanisms suppressible by two pharmacological agents, levamisole and aldicarb which enhance cholinergic signaling in muscle. In addition, animals with reduction-of-function mutations in genes encoding post-synaptic levamisole-sensitive acetylcholine receptor subunits or the vesicular acetylcholine transporter developed impaired forward movement faster during selenium-exposure than normal animals, again confirming that selenium reduces cholinergic signaling. Finally, the antioxidant reduced glutathione, inhibits selenium-induced reductions in egg-laying through a cellular protective mechanism dependent on the C. elegans glutaredoxin, GLRX-21. These studies provide evidence that the environmental toxicant selenium induces neurodegeneration of cholinergic neurons through depletion of glutathione, a mechanism linked to the neuropathology of Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease.

Citing Articles

Selenium-Enriched Bacteria Mitigate the Age-Associated Degeneration of Cholinergic Neurons in .

Zytner P, Kutschbach A, Gong W, Ohse V, Taudte L, Kipp A Antioxidants (Basel). 2024; 13(4).

PMID: 38671939 PMC: 11047679. DOI: 10.3390/antiox13040492.


Oxidative Stress in Amyotrophic Lateral Sclerosis: Synergy of Genetic and Environmental Factors.

Motataianu A, Serban G, Barcutean L, Balasa R Int J Mol Sci. 2022; 23(16).

PMID: 36012603 PMC: 9409178. DOI: 10.3390/ijms23169339.


A perspective on persistent toxicants in veterans and amyotrophic lateral sclerosis: identifying exposures determining higher ALS risk.

Re D, Yan B, Calderon-Garciduenas L, Andrew A, Tischbein M, Stommel E J Neurol. 2022; 269(5):2359-2377.

PMID: 34973105 PMC: 9021134. DOI: 10.1007/s00415-021-10928-5.


Prenatal exposure to a mixture of elements and neurobehavioral outcomes in mid-childhood: Results from Project Viva.

Fruh V, Rifas-Shiman S, Coull B, Devick K, Amarasiriwardena C, Cardenas A Environ Res. 2021; 201:111540.

PMID: 34166661 PMC: 8502495. DOI: 10.1016/j.envres.2021.111540.


Deep learning-enabled analysis reveals distinct neuronal phenotypes induced by aging and cold-shock.

Saberi-Bosari S, Flores K, San-Miguel A BMC Biol. 2020; 18(1):130.

PMID: 32967665 PMC: 7510121. DOI: 10.1186/s12915-020-00861-w.


References
1.
Koller L, Exon J . The two faces of selenium-deficiency and toxicity--are similar in animals and man. Can J Vet Res. 1986; 50(3):297-306. PMC: 1255217. View

2.
Kanning K, Kaplan A, Henderson C . Motor neuron diversity in development and disease. Annu Rev Neurosci. 2010; 33:409-40. DOI: 10.1146/annurev.neuro.051508.135722. View

3.
Fostel J, Benner Coste L, Jacobson L . Degradation of transgene-coded and endogenous proteins in the muscles of Caenorhabditis elegans. Biochem Biophys Res Commun. 2003; 312(1):173-7. DOI: 10.1016/j.bbrc.2003.09.248. View

4.
Silverman G, Luke C, Bhatia S, Long O, Vetica A, Perlmutter D . Modeling molecular and cellular aspects of human disease using the nematode Caenorhabditis elegans. Pediatr Res. 2008; 65(1):10-8. PMC: 2731241. DOI: 10.1203/PDR.0b013e31819009b0. View

5.
Fairweather-Tait S, Bao Y, Broadley M, Collings R, Ford D, Hesketh J . Selenium in human health and disease. Antioxid Redox Signal. 2010; 14(7):1337-83. DOI: 10.1089/ars.2010.3275. View