» Articles » PMID: 22539523

Metal-ion Rescue Revisited: Biochemical Detection of Site-bound Metal Ions Important for RNA Folding

Overview
Journal RNA
Specialty Molecular Biology
Date 2012 Apr 28
PMID 22539523
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

Within the three-dimensional architectures of RNA molecules, divalent metal ions populate specific locations, shedding their water molecules to form chelates. These interactions help the RNA adopt and maintain specific conformations and frequently make essential contributions to function. Defining the locations of these site-bound metal ions remains challenging despite the growing database of RNA structures. Metal-ion rescue experiments have provided a powerful approach to identify and distinguish catalytic metal ions within RNA active sites, but the ability of such experiments to identify metal ions that contribute to tertiary structure acquisition and structural stability is less developed and has been challenged. Herein, we use the well-defined P4-P6 RNA domain of the Tetrahymena group I intron to reevaluate prior evidence against the discriminatory power of metal-ion rescue experiments and to advance thermodynamic descriptions necessary for interpreting these experiments. The approach successfully identifies ligands within the RNA that occupy the inner coordination sphere of divalent metal ions and distinguishes them from ligands that occupy the outer coordination sphere. Our results underscore the importance of obtaining complete folding isotherms and establishing and evaluating thermodynamic models in order to draw conclusions from metal-ion rescue experiments. These results establish metal-ion rescue as a rigorous tool for identifying and dissecting energetically important metal-ion interactions in RNAs that are noncatalytic but critical for RNA tertiary structure.

Citing Articles

Structural Basis for Fluorescence Activation by Pepper RNA.

Rees H, Gogacz W, Li N, Koirala D, Piccirilli J ACS Chem Biol. 2022; 17(7):1866-1875.

PMID: 35759696 PMC: 9969808. DOI: 10.1021/acschembio.2c00290.


Cryo-EM structures of full-length Tetrahymena ribozyme at 3.1 Å resolution.

Su Z, Zhang K, Kappel K, Li S, Palo M, Pintilie G Nature. 2021; 596(7873):603-607.

PMID: 34381213 PMC: 8405103. DOI: 10.1038/s41586-021-03803-w.


Optimized Magnesium Force Field Parameters for Biomolecular Simulations with Accurate Solvation, Ion-Binding, and Water-Exchange Properties.

Grotz K, Cruz-Leon S, Schwierz N J Chem Theory Comput. 2021; 17(4):2530-2540.

PMID: 33720710 PMC: 8047801. DOI: 10.1021/acs.jctc.0c01281.


Mg-Dependent Methyl Transfer by a Knotted Protein: A Molecular Dynamics Simulation and Quantum Mechanics Study.

Perlinska A, Kalek M, Christian T, Hou Y, Sulkowska J ACS Catal. 2020; 10(15):8058-8068.

PMID: 32904895 PMC: 7462349. DOI: 10.1021/acscatal.0c00059.


Computational design of three-dimensional RNA structure and function.

Yesselman J, Eiler D, Carlson E, Gotrik M, dAquino A, Ooms A Nat Nanotechnol. 2019; 14(9):866-873.

PMID: 31427748 PMC: 7324284. DOI: 10.1038/s41565-019-0517-8.


References
1.
Das R, Travers K, Bai Y, Herschlag D . Determining the Mg2+ stoichiometry for folding an RNA metal ion core. J Am Chem Soc. 2005; 127(23):8272-3. PMC: 2538950. DOI: 10.1021/ja051422h. View

2.
Draper D, Grilley D, Soto A . Ions and RNA folding. Annu Rev Biophys Biomol Struct. 2005; 34:221-43. DOI: 10.1146/annurev.biophys.34.040204.144511. View

3.
Wang S, Karbstein K, Peracchi A, Beigelman L, Herschlag D . Identification of the hammerhead ribozyme metal ion binding site responsible for rescue of the deleterious effect of a cleavage site phosphorothioate. Biochemistry. 1999; 38(43):14363-78. DOI: 10.1021/bi9913202. View

4.
Shan S, Yoshida A, Sun S, Piccirilli J, Herschlag D . Three metal ions at the active site of the Tetrahymena group I ribozyme. Proc Natl Acad Sci U S A. 1999; 96(22):12299-304. PMC: 22911. DOI: 10.1073/pnas.96.22.12299. View

5.
Adams P, Stahley M, Kosek A, Wang J, Strobel S . Crystal structure of a self-splicing group I intron with both exons. Nature. 2004; 430(6995):45-50. DOI: 10.1038/nature02642. View