» Articles » PMID: 31427748

Computational Design of Three-dimensional RNA Structure and Function

Abstract

RNA nanotechnology seeks to create nanoscale machines by repurposing natural RNA modules. The field is slowed by the current need for human intuition during three-dimensional structural design. Here, we demonstrate that three distinct problems in RNA nanotechnology can be reduced to a pathfinding problem and automatically solved through an algorithm called RNAMake. First, RNAMake discovers highly stable single-chain solutions to the classic problem of aligning a tetraloop and its sequence-distal receptor, with experimental validation from chemical mapping, gel electrophoresis, solution X-ray scattering and crystallography with 2.55 Å resolution. Second, RNAMake automatically generates structured tethers that integrate 16S and 23S ribosomal RNAs into single-chain ribosomal RNAs that remain uncleaved by ribonucleases and assemble onto messenger RNA. Third, RNAMake enables the automated stabilization of small-molecule binding RNAs, with designed tertiary contacts that improve the binding affinity of the ATP aptamer and improve the fluorescence and stability of the Spinach RNA in cell extracts and in living Escherichia coli cells.

Citing Articles

Characterizing 3D RNA structural features from DMS reactivity.

Deenalattha D, Jurich C, Lange B, Armstrong D, Nein K, Yesselman J bioRxiv. 2024; .

PMID: 39605336 PMC: 11601540. DOI: 10.1101/2024.11.21.624766.


Exploring the energetic and conformational properties of the sequence space connecting naturally occurring RNA tetraloop receptor motifs.

Shin J, Cuevas L, Roy R, Bonilla S, Al-Hashimi H, Greenleaf W RNA. 2024; 30(12):1646-1659.

PMID: 39362695 PMC: 11571812. DOI: 10.1261/rna.080039.124.


gRNAde: A Geometric Deep Learning Pipeline for 3D RNA Inverse Design.

Joshi C, Lio P Methods Mol Biol. 2024; 2847:121-135.

PMID: 39312140 DOI: 10.1007/978-1-0716-4079-1_8.


Machine Learning for RNA Design: LEARNA.

Runge F, Hutter F Methods Mol Biol. 2024; 2847:63-93.

PMID: 39312137 DOI: 10.1007/978-1-0716-4079-1_5.


Therapeutic applications of RNA nanostructures.

Yip T, Qi X, Yan H, Chang Y RSC Adv. 2024; 14(39):28807-28821.

PMID: 39263430 PMC: 11387945. DOI: 10.1039/d4ra03823a.


References
1.
Jiang F, Kumar R, Jones R, Patel D . Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex. Nature. 1996; 382(6587):183-6. DOI: 10.1038/382183a0. View

2.
Frederiksen J, Li N, Das R, Herschlag D, Piccirilli J . Metal-ion rescue revisited: biochemical detection of site-bound metal ions important for RNA folding. RNA. 2012; 18(6):1123-41. PMC: 3358636. DOI: 10.1261/rna.028738.111. View

3.
Jasinski D, Haque F, Binzel D, Guo P . Advancement of the Emerging Field of RNA Nanotechnology. ACS Nano. 2017; 11(2):1142-1164. PMC: 5333189. DOI: 10.1021/acsnano.6b05737. View

4.
Bindewald E, Grunewald C, Boyle B, OConnor M, Shapiro B . Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler. J Mol Graph Model. 2008; 27(3):299-308. PMC: 3744370. DOI: 10.1016/j.jmgm.2008.05.004. View

5.
Fried S, Schmied W, Uttamapinant C, Chin J . Ribosome Subunit Stapling for Orthogonal Translation in E. coli. Angew Chem Int Ed Engl. 2015; 54(43):12791-4. PMC: 4678508. DOI: 10.1002/anie.201506311. View