» Articles » PMID: 22472604

Noninvasive MRI Measurement of CBF: Evaluating an Arterial Spin Labelling Sequence with 99mTc-HMPAO CBF Autoradiography in a Rat Stroke Model

Overview
Authors
Affiliations
Soon will be listed here.
Abstract

Arterial spin labelling (ASL) is increasingly available for noninvasive cerebral blood flow (CBF) measurement in stroke research. Here, a pseudo-continuous ASL technique (pCASL) was evaluated against (99m)Tc-D, L-hexamethylpropyleneamine oxime ((99m)Tc-HMPAO) autoradiography in a rat stroke model. The (99m)Tc-HMPAO was injected (intravenously, 225 MBq) during pCASL acquisition. The pCASL and (99m)Tc-HMPAO autoradiography CBF measures, relative to the contralateral hemisphere, were in good agreement across the spectrum of flow values in normal and ischemic tissues. The pCASL-derived quantitative regional CBF values (contralateral: 157 to 177 mL/100 g per minute; ipsilateral: 9 to 104 mL/100 g per minute) were consistent with the literature values. The data show the potential utility of pCASL for CBF assessment in a rat stroke model.

Citing Articles

Perfusion-weighted software written in Python for DSC-MRI analysis.

Fernandez-Rodicio S, Ferro-Costas G, Sampedro-Viana A, Bazarra-Barreiros M, Ferreiros A, Lopez-Arias E Front Neuroinform. 2023; 17:1202156.

PMID: 37593674 PMC: 10431979. DOI: 10.3389/fninf.2023.1202156.


Application of diffusion weighted multiple boli ASL to a murine model of human African trypanosomiasis.

Paterson S, Vallatos A, Rodgers J, Holmes W Sci Rep. 2023; 13(1):8684.

PMID: 37248398 PMC: 10227057. DOI: 10.1038/s41598-023-34665-z.


Effects of red blood cells with reduced deformability on cerebral blood flow and vascular water transport: measurements in rats using time-resolved pulsed arterial spin labelling at 9.4 T.

Bibic A, Sordia T, Henningsson E, Knutsson L, Stahlberg F, Wirestam R Eur Radiol Exp. 2021; 5(1):53.

PMID: 34935093 PMC: 8692551. DOI: 10.1186/s41747-021-00243-z.


Hyperglycaemia does not increase perfusion deficits after focal cerebral ischaemia in male Wistar rats.

Thow L, MacDonald K, Holmes W, Muir K, Macrae I, Dewar D Brain Neurosci Adv. 2020; 2:2398212818794820.

PMID: 32166145 PMC: 7058243. DOI: 10.1177/2398212818794820.


Sensitivity of Multiphase Pseudocontinuous Arterial Spin Labelling (MP pCASL) Magnetic Resonance Imaging for Measuring Brain and Tumour Blood Flow in Mice.

Buck J, Larkin J, Simard M, Khrapitchev A, Chappell M, Sibson N Contrast Media Mol Imaging. 2018; 2018:4580919.

PMID: 30532663 PMC: 6247770. DOI: 10.1155/2018/4580919.


References
1.
Lythgoe M, Williams S, Busza A, Wiebe L, McEwan A, Gadian D . The relationship between magnetic resonance diffusion imaging and autoradiographic markers of cerebral blood flow and hypoxia in an animal stroke model. Magn Reson Med. 1999; 41(4):706-14. DOI: 10.1002/(sici)1522-2594(199904)41:4<706::aid-mrm8>3.0.co;2-8. View

2.
Zaharchuk G, Yamada M, Sasamata M, Jenkins B, Moskowitz M, Rosen B . Is all perfusion-weighted magnetic resonance imaging for stroke equal? The temporal evolution of multiple hemodynamic parameters after focal ischemia in rats correlated with evidence of infarction. J Cereb Blood Flow Metab. 2000; 20(9):1341-51. DOI: 10.1097/00004647-200009000-00009. View

3.
Lassen N, Andersen A, Friberg L, Paulson O . The retention of [99mTc]-d,l-HM-PAO in the human brain after intracarotid bolus injection: a kinetic analysis. J Cereb Blood Flow Metab. 1988; 8(6):S13-22. DOI: 10.1038/jcbfm.1988.28. View

4.
Leithner C, Gertz K, Schrock H, Priller J, Prass K, Steinbrink J . A flow sensitive alternating inversion recovery (FAIR)-MRI protocol to measure hemispheric cerebral blood flow in a mouse stroke model. Exp Neurol. 2007; 210(1):118-27. DOI: 10.1016/j.expneurol.2007.10.003. View

5.
Karlsen O, Verhagen R, Bovee W . Parameter estimation from Rician-distributed data sets using a maximum likelihood estimator: application to T1 and perfusion measurements. Magn Reson Med. 1999; 41(3):614-23. DOI: 10.1002/(sici)1522-2594(199903)41:3<614::aid-mrm26>3.0.co;2-1. View