» Articles » PMID: 22463023

Fast Optically Sectioned Fluorescence HiLo Endomicroscopy

Overview
Journal J Biomed Opt
Date 2012 Apr 3
PMID 22463023
Citations 34
Authors
Affiliations
Soon will be listed here.
Abstract

We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies.

Citing Articles

Optical sectioning methods in three-dimensional bioimaging.

Zhang J, Qiao W, Jin R, Li H, Gong H, Chen S Light Sci Appl. 2024; 14(1):11.

PMID: 39741128 PMC: 11688461. DOI: 10.1038/s41377-024-01677-x.


HiLo microscopy with caustic illumination.

Hu G, Greene J, Zhu J, Yang Q, Zheng S, Li Y Biomed Opt Express. 2024; 15(7):4101-4110.

PMID: 39022539 PMC: 11249696. DOI: 10.1364/BOE.527264.


Fiberscopic pattern removal for optimal coverage in 3D bladder reconstructions of fiberscope cystoscopy videos.

Eimen R, Krzyzanowska H, Scarpato K, Bowden A J Med Imaging (Bellingham). 2024; 11(3):034002.

PMID: 38765873 PMC: 11099938. DOI: 10.1117/1.JMI.11.3.034002.


In Vivo Intelligent Fluorescence Endo-Microscopy by Varifocal Meta-Device and Deep Learning.

Chia Y, Liao W, Vyas S, Chu C, Yamaguchi T, Liu X Adv Sci (Weinh). 2024; 11(20):e2307837.

PMID: 38488694 PMC: 11132035. DOI: 10.1002/advs.202307837.


Ultra-miniature dual-wavelength spatial frequency domain imaging for micro-endoscopy.

Crowley J, Gordon G J Biomed Opt. 2024; 29(2):026002.

PMID: 38312854 PMC: 10832795. DOI: 10.1117/1.JBO.29.2.026002.


References
1.
Han J, Lee J, Kang J . Pixelation effect removal from fiber bundle probe based optical coherence tomography imaging. Opt Express. 2010; 18(7):7427-39. PMC: 3359145. DOI: 10.1364/OE.18.007427. View

2.
Chin W, Lau W, Bhuvaneswari R, Heng P, Olivo M . Chlorin e6-polyvinylpyrrolidone as a fluorescent marker for fluorescence diagnosis of human bladder cancer implanted on the chick chorioallantoic membrane model. Cancer Lett. 2006; 245(1-2):127-33. DOI: 10.1016/j.canlet.2005.12.041. View

3.
Karadaglic D, Juskaitis R, Wilson T . Confocal endoscopy via structured illumination. Scanning. 2003; 24(6):301-4. DOI: 10.1002/sca.4950240604. View

4.
Mertz J, Kim J . Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection. J Biomed Opt. 2010; 15(1):016027. PMC: 2917465. DOI: 10.1117/1.3324890. View

5.
Winter C, Rupp S, Elter M, Munzenmayer C, Gerhauser H, Wittenberg T . Automatic adaptive enhancement for images obtained with fiberscopic endoscopes. IEEE Trans Biomed Eng. 2006; 53(10):2035-46. DOI: 10.1109/TBME.2006.877110. View