» Articles » PMID: 22431636

Riboswitch Control of Rho-dependent Transcription Termination

Overview
Specialty Science
Date 2012 Mar 21
PMID 22431636
Citations 114
Authors
Affiliations
Soon will be listed here.
Abstract

Riboswitches are RNA sensors that regulate gene expression upon binding specific metabolites or ions. Bacterial riboswitches control gene expression primarily by promoting intrinsic transcription termination or by inhibiting translation initiation. We now report a third general mechanism of riboswitch action: governing the ability of the RNA-dependent helicase Rho to terminate transcription. We establish that Rho promotes transcription termination in the Mg(2+)-sensing mgtA riboswitch from Salmonella enterica serovar Typhimurium and the flavin mononucleotide-sensing ribB riboswitch from Escherichia coli when the corresponding riboswitch ligands are present. The Rho-specific inhibitor bicyclomycin enabled transcription of the coding regions at these two loci in bacteria experiencing repressing concentrations of the riboswitch ligands in vivo. A mutation in the mgtA leader that favors the "high Mg(2+)" conformation of the riboswitch promoted Rho-dependent transcription termination in vivo and in vitro and enhanced the ability of the RNA to stimulate Rho's ATPase activity in vitro. These effects were overcome by mutations in a C-rich region of the mRNA that is alternately folded at high and low Mg(2+), suggesting a role for this region in regulating the activity of Rho. Our results reveal a potentially widespread mode of gene regulation whereby riboswitches dictate whether a protein effector can interact with the transcription machinery to prematurely terminate transcription.

Citing Articles

Regulation of magnesium ion transport in : insights into the role of the 5' upstream region in expression.

Vezina Bedard A, Michaud A, Quenette F, Singh N, de Lemos Martins F, Wade J RNA Biol. 2024; 21(1):94-106.

PMID: 39513341 PMC: 11552253. DOI: 10.1080/15476286.2024.2421665.


NusG-dependent RNA polymerase pausing is a common feature of riboswitch regulatory mechanisms.

Jayasinghe O, Ritchey L, Breil T, Newman P, Yakhnin H, Babitzke P Nucleic Acids Res. 2024; 52(21):12945-12960.

PMID: 39494516 PMC: 11602163. DOI: 10.1093/nar/gkae981.


Insights into the cotranscriptional and translational control mechanisms of the Escherichia coli tbpA thiamin pyrophosphate riboswitch.

Grondin J, Geffroy M, Simoneau-Roy M, Chauvier A, Turcotte P, St-Pierre P Commun Biol. 2024; 7(1):1345.

PMID: 39420148 PMC: 11487190. DOI: 10.1038/s42003-024-07008-5.


The riboswitch senses flavin mononucleotide within a defined transcriptional window.

Eschbach S, Hien E, Ghosh T, Lamontagne A, Lafontaine D RNA. 2024; 30(12):1660-1673.

PMID: 39366707 PMC: 11571811. DOI: 10.1261/rna.080074.124.


START: A Versatile Platform for Bacterial Ligand Sensing with Programmable Performances.

Kim J, Seo M, Lim Y, Kim J Adv Sci (Weinh). 2024; 11(36):e2402029.

PMID: 39075726 PMC: 11423158. DOI: 10.1002/advs.202402029.


References
1.
Vitreschak A, Rodionov D, Mironov A, Gelfand M . Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucleic Acids Res. 2002; 30(14):3141-51. PMC: 135753. DOI: 10.1093/nar/gkf433. View

2.
Vogel J, Bartels V, Tang T, Churakov G, Slagter-Jager J, Huttenhofer A . RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. Nucleic Acids Res. 2003; 31(22):6435-43. PMC: 275561. DOI: 10.1093/nar/gkg867. View

3.
Roberts J . Termination factor for RNA synthesis. Nature. 1969; 224(5225):1168-74. DOI: 10.1038/2241168a0. View

4.
Irnov I, Sharma C, Vogel J, Winkler W . Identification of regulatory RNAs in Bacillus subtilis. Nucleic Acids Res. 2010; 38(19):6637-51. PMC: 2965217. DOI: 10.1093/nar/gkq454. View

5.
Bastet L, Dube A, Masse E, Lafontaine D . New insights into riboswitch regulation mechanisms. Mol Microbiol. 2011; 80(5):1148-54. DOI: 10.1111/j.1365-2958.2011.07654.x. View