» Articles » PMID: 38729929

A Nascent Riboswitch Helix Orchestrates Robust Transcriptional Regulation Through Signal Integration

Overview
Journal Nat Commun
Specialty Biology
Date 2024 May 10
PMID 38729929
Authors
Affiliations
Soon will be listed here.
Abstract

Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches - like most structured RNAs - are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single-molecule and bulk approaches, we discover how a single Mn ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the representative Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control.

Citing Articles

Opportunities for Riboswitch Inhibition by Targeting Co-Transcriptional RNA Folding Events.

Stephen C, Palmer D, Mishanina T Int J Mol Sci. 2024; 25(19).

PMID: 39408823 PMC: 11476745. DOI: 10.3390/ijms251910495.

References
1.
Krupp F, Said N, Huang Y, Loll B, Burger J, Mielke T . Structural Basis for the Action of an All-Purpose Transcription Anti-termination Factor. Mol Cell. 2019; 74(1):143-157.e5. DOI: 10.1016/j.molcel.2019.01.016. View

2.
Chauvier A, Nadon J, Grondin J, Lamontagne A, Lafontaine D . Role of a hairpin-stabilized pause in the riboswitch function. RNA Biol. 2019; 16(8):1066-1073. PMC: 6602414. DOI: 10.1080/15476286.2019.1616354. View

3.
Strobel E, Cheng L, Berman K, Carlson P, Lucks J . A ligand-gated strand displacement mechanism for ZTP riboswitch transcription control. Nat Chem Biol. 2019; 15(11):1067-1076. PMC: 6814202. DOI: 10.1038/s41589-019-0382-7. View

4.
Huang Y, Hilal T, Loll B, Burger J, Mielke T, Bottcher C . Structure-Based Mechanisms of a Molecular RNA Polymerase/Chaperone Machine Required for Ribosome Biosynthesis. Mol Cell. 2020; 79(6):1024-1036.e5. DOI: 10.1016/j.molcel.2020.08.010. View

5.
Zhao B, Guffy S, Williams B, Zhang Q . An excited state underlies gene regulation of a transcriptional riboswitch. Nat Chem Biol. 2017; 13(9):968-974. PMC: 5562522. DOI: 10.1038/nchembio.2427. View