» Articles » PMID: 22341439

TAK1 Inhibition Promotes Apoptosis in KRAS-dependent Colon Cancers

Overview
Journal Cell
Publisher Cell Press
Specialty Cell Biology
Date 2012 Feb 21
PMID 22341439
Citations 176
Authors
Affiliations
Soon will be listed here.
Abstract

Colon cancers frequently harbor KRAS mutations, yet only a subset of KRAS mutant colon cancer cell lines are dependent upon KRAS signaling for survival. In a screen for kinases that promote survival of KRAS-dependent colon cancer cells, we found that the TAK1 kinase (MAP3K7) is required for tumor cell viability. The induction of apoptosis by RNAi-mediated depletion or pharmacologic inhibition of TAK1 is linked to its suppression of hyperactivated Wnt signaling, evident in both endogenous and genetically reconstituted cells. In APC mutant/KRAS-dependent cells, KRAS stimulates BMP-7 secretion and BMP signaling, leading to TAK1 activation and enhancement of Wnt-dependent transcription. An in vitro-derived "TAK1 dependency signature" is enriched in primary human colon cancers with mutations in both APC and KRAS, suggesting potential clinical utility in stratifying patient populations. Together, these findings identify TAK1 inhibition as a potential therapeutic strategy for a treatment-refractory subset of colon cancers exhibiting aberrant KRAS and Wnt pathway activation.

Citing Articles

Raver1 links RNA splicing to caspase-8-mediated pyroptotic cell death, inflammation, and pathogen resistance.

Zhang B, Orning P, Lehman J, Dinis A, Torres-Ulloa L, Elling R Proc Natl Acad Sci U S A. 2025; 122(7):e2420802122.

PMID: 39946533 PMC: 11848402. DOI: 10.1073/pnas.2420802122.


Bibliometric and visualized analysis on global trends and hotspots of TAK1 in regulated cell death: 1999 to 2024.

Huang K, He Y, Wan H, Ban X, Chen X, Hu X Front Immunol. 2024; 15:1437570.

PMID: 39474417 PMC: 11518718. DOI: 10.3389/fimmu.2024.1437570.


Exploring and validating the necroptotic gene regulation and related lncRNA mechanisms in colon adenocarcinoma based on multi-dimensional data.

Wang W, Liu Y, Wang Z, Tan X, Jian X, Zhang Z Sci Rep. 2024; 14(1):22251.

PMID: 39333335 PMC: 11437100. DOI: 10.1038/s41598-024-73168-3.


TAK1 expression is associated with increased PD-L1 and decreased cancer-specific survival in microsatellite-stable colorectal cancer.

Galbraith N, Quinn J, Al-Badran S, Pennel K, Hillson L, Hatthakarnkul P Transl Oncol. 2024; 48:102064.

PMID: 39068768 PMC: 11338118. DOI: 10.1016/j.tranon.2024.102064.


Fibroblasts Promote Resistance to KRAS Silencing in Colorectal Cancer Cells.

Oliveira S, Carvalho P, Serra-Roma A, Oliveira P, Ribeiro A, Carvalho J Cancers (Basel). 2024; 16(14).

PMID: 39061234 PMC: 11274566. DOI: 10.3390/cancers16142595.


References
1.
Haber D, Gray N, Baselga J . The evolving war on cancer. Cell. 2011; 145(1):19-24. DOI: 10.1016/j.cell.2011.03.026. View

2.
Sekiya T, Adachi S, Kohu K, Yamada T, Higuchi O, Furukawa Y . Identification of BMP and activin membrane-bound inhibitor (BAMBI), an inhibitor of transforming growth factor-beta signaling, as a target of the beta-catenin pathway in colorectal tumor cells. J Biol Chem. 2003; 279(8):6840-6. DOI: 10.1074/jbc.M310876200. View

3.
Normanno N, Tejpar S, Morgillo F, De Luca A, Van Cutsem E, Ciardiello F . Implications for KRAS status and EGFR-targeted therapies in metastatic CRC. Nat Rev Clin Oncol. 2009; 6(9):519-27. DOI: 10.1038/nrclinonc.2009.111. View

4.
Melisi D, Xia Q, Paradiso G, Ling J, Moccia T, Carbone C . Modulation of pancreatic cancer chemoresistance by inhibition of TAK1. J Natl Cancer Inst. 2011; 103(15):1190-204. PMC: 3149044. DOI: 10.1093/jnci/djr243. View

5.
Moffat J, Grueneberg D, Yang X, Kim S, Kloepfer A, Hinkle G . A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell. 2006; 124(6):1283-98. DOI: 10.1016/j.cell.2006.01.040. View