» Articles » PMID: 22207204

The Interface of Transcription and DNA Replication in the Mitochondria

Overview
Specialties Biochemistry
Biophysics
Date 2011 Dec 31
PMID 22207204
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

DNA replication of the mitochondrial genome is unique in that replication is not primed by RNA derived from dedicated primases, but instead by extension of processed RNA transcripts laid down by the mitochondrial RNA polymerase. Thus, the RNA polymerase serves not only to generate the transcripts but also the primers needed for mitochondrial DNA replication. The interface between this transcription and DNA replication is not well understood but must be highly regulated and coordinated to carry out both mitochondrial DNA replication and transcription. This review focuses on the extension of RNA primers for DNA replication by the replication machinery and summarizes the current models of DNA replication in mitochondria as well as the proteins involved in mitochondrial DNA replication, namely, the DNA polymerase γ and its accessory subunit, the mitochondrial DNA helicase, the single-stranded DNA binding protein, topoisomerase I and IIIα and RNaseH1. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.

Citing Articles

Accumulation of 8-oxodG within the human mitochondrial genome positively associates with transcription.

Scala G, Ambrosio S, Menna M, Gorini F, Caiazza C, Cooke M NAR Genom Bioinform. 2023; 5(4):lqad100.

PMID: 37954575 PMC: 10632194. DOI: 10.1093/nargab/lqad100.


Mitochondrial DNA: Consensuses and Controversies.

Shokolenko I, Alexeyev M DNA (Basel). 2022; 2(2):131-148.

PMID: 36381197 PMC: 9648901. DOI: 10.3390/dna2020010.


Mitochondrial DNA Mutagenesis: Feature of and Biomarker for Environmental Exposures and Aging.

Leuthner T, Meyer J Curr Environ Health Rep. 2021; 8(4):294-308.

PMID: 34761353 PMC: 8826492. DOI: 10.1007/s40572-021-00329-1.


Epigenome-wide association study of mitochondrial genome copy number.

Wang P, Castellani C, Yao J, Huan T, Bielak L, Zhao W Hum Mol Genet. 2021; 31(2):309-319.

PMID: 34415308 PMC: 8742999. DOI: 10.1093/hmg/ddab240.


Mitochondrial DNA and Neurodegeneration: Any Role for Dietary Antioxidants?.

Bordoni L, Gabbianelli R Antioxidants (Basel). 2020; 9(8).

PMID: 32824558 PMC: 7466149. DOI: 10.3390/antiox9080764.


References
1.
Akbari M, Visnes T, Krokan H, Otterlei M . Mitochondrial base excision repair of uracil and AP sites takes place by single-nucleotide insertion and long-patch DNA synthesis. DNA Repair (Amst). 2008; 7(4):605-16. DOI: 10.1016/j.dnarep.2008.01.002. View

2.
Yasukawa T, Reyes A, Cluett T, Yang M, Bowmaker M, Jacobs H . Replication of vertebrate mitochondrial DNA entails transient ribonucleotide incorporation throughout the lagging strand. EMBO J. 2006; 25(22):5358-71. PMC: 1636616. DOI: 10.1038/sj.emboj.7601392. View

3.
Low R, Orton S, Friedman D . A truncated form of DNA topoisomerase IIbeta associates with the mtDNA genome in mammalian mitochondria. Eur J Biochem. 2003; 270(20):4173-86. DOI: 10.1046/j.1432-1033.2003.03814.x. View

4.
Brown T, Tkachuk A, Clayton D . Native R-loops persist throughout the mouse mitochondrial DNA genome. J Biol Chem. 2008; 283(52):36743-51. PMC: 2605977. DOI: 10.1074/jbc.M806174200. View

5.
Liu P, Qian L, Sung J, de Souza-Pinto N, Zheng L, Bogenhagen D . Removal of oxidative DNA damage via FEN1-dependent long-patch base excision repair in human cell mitochondria. Mol Cell Biol. 2008; 28(16):4975-87. PMC: 2519700. DOI: 10.1128/MCB.00457-08. View