» Articles » PMID: 22205862

Machine Learning Methods for Classifying Human Physical Activity from On-body Accelerometers

Overview
Journal Sensors (Basel)
Publisher MDPI
Specialty Biotechnology
Date 2011 Dec 30
PMID 22205862
Citations 126
Authors
Affiliations
Soon will be listed here.
Abstract

The use of on-body wearable sensors is widespread in several academic and industrial domains. Of great interest are their applications in ambulatory monitoring and pervasive computing systems; here, some quantitative analysis of human motion and its automatic classification are the main computational tasks to be pursued. In this paper, we discuss how human physical activity can be classified using on-body accelerometers, with a major emphasis devoted to the computational algorithms employed for this purpose. In particular, we motivate our current interest for classifiers based on Hidden Markov Models (HMMs). An example is illustrated and discussed by analysing a dataset of accelerometer time series.

Citing Articles

Machine learning modeling for predicting adherence to physical activity guideline.

Choe J, Lee S, Kang M Sci Rep. 2025; 15(1):5650.

PMID: 39955422 PMC: 11829956. DOI: 10.1038/s41598-025-90077-1.


Classifying Food Items During an Eating Occasion: A Machine Learning Approach with Slope Dynamics for Windowed Kinetic Data.

Baldi I, Lanera C, Bhuyan M, Berchialla P, Vedovelli L, Gregori D Foods. 2025; 14(2).

PMID: 39856942 PMC: 11764823. DOI: 10.3390/foods14020276.


A Review on Assisted Living Using Wearable Devices.

Iadarola G, Mengarelli A, Crippa P, Fioretti S, Spinsante S Sensors (Basel). 2024; 24(23).

PMID: 39685975 PMC: 11644744. DOI: 10.3390/s24237439.


Data Analytics in Physical Activity Studies With Accelerometers: Scoping Review.

Liang Y, Wang C, Hsiao C J Med Internet Res. 2024; 26:e59497.

PMID: 39259962 PMC: 11425027. DOI: 10.2196/59497.


Optimization of activity-driven event detection for long-term ambulatory urodynamics.

Zareen F, Elazab M, Hanzlicek B, Doelman A, Bourbeau D, Majerus S Proc Inst Mech Eng H. 2024; 238(6):608-618.

PMID: 39104258 PMC: 11610109. DOI: 10.1177/09544119241264304.


References
1.
Bouten C, Koekkoek K, Verduin M, Kodde R, Janssen J . A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Trans Biomed Eng. 1997; 44(3):136-47. DOI: 10.1109/10.554760. View

2.
Sabatini A, Martelloni C, Scapellato S, Cavallo F . Assessment of walking features from foot inertial sensing. IEEE Trans Biomed Eng. 2005; 52(3):486-94. DOI: 10.1109/TBME.2004.840727. View

3.
Karantonis D, Narayanan M, Mathie M, Lovell N, Celler B . Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans Inf Technol Biomed. 2006; 10(1):156-67. DOI: 10.1109/titb.2005.856864. View

4.
Bussmann J, Martens W, Tulen J, Schasfoort F, Stam H . Measuring daily behavior using ambulatory accelerometry: the Activity Monitor. Behav Res Methods Instrum Comput. 2001; 33(3):349-56. DOI: 10.3758/bf03195388. View

5.
Mathie M, Celler B, Lovell N, Coster A . Classification of basic daily movements using a triaxial accelerometer. Med Biol Eng Comput. 2004; 42(5):679-87. DOI: 10.1007/BF02347551. View