» Articles » PMID: 22157013

Analysis and Functional Prediction of Reactive Cysteine Residues

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2011 Dec 14
PMID 22157013
Citations 111
Authors
Affiliations
Soon will be listed here.
Abstract

Cys is much different from other common amino acids in proteins. Being one of the least abundant residues, Cys is often observed in functional sites in proteins. This residue is reactive, polarizable, and redox-active; has high affinity for metals; and is particularly responsive to the local environment. A better understanding of the basic properties of Cys is essential for interpretation of high-throughput data sets and for prediction and classification of functional Cys residues. We provide an overview of approaches used to study Cys residues, from methods for investigation of their basic properties, such as exposure and pK(a), to algorithms for functional prediction of different types of Cys in proteins.

Citing Articles

Determination of Structural Factors Contributing to Protection of Zinc Fingers in Estrogen Receptor α through Molecular Dynamic Simulations.

Lutz P, Coombs W, Bayse C J Phys Chem B. 2025; 129(8):2226-2234.

PMID: 39937829 PMC: 11873919. DOI: 10.1021/acs.jpcb.4c05730.


KaMLs for Predicting Protein p Values and Ionization States: Are Trees All You Need?.

Shen M, Kortzak D, Ambrozak S, Bhatnagar S, Buchanan I, Liu R bioRxiv. 2024; .

PMID: 39605739 PMC: 11601431. DOI: 10.1101/2024.11.09.622800.


Identification of Pathogenic Missense Mutations of NF1 Using Computational Approaches.

Chen J, Li Z, Wu Y, Li X, Chen Z, Chen P J Mol Neurosci. 2024; 74(4):94.

PMID: 39373898 PMC: 11458684. DOI: 10.1007/s12031-024-02271-x.


Unlocking the function promiscuity of old yellow enzyme to catalyze asymmetric Morita-Baylis-Hillman reaction.

Wang L, Wu Y, Hu J, Yin D, Wei W, Wen J Nat Commun. 2024; 15(1):5737.

PMID: 38982157 PMC: 11233575. DOI: 10.1038/s41467-024-50141-2.


Navigating the redox landscape: reactive oxygen species in regulation of cell cycle.

Mackova V, Raudenska M, Polanska H, Jakubek M, Masarik M Redox Rep. 2024; 29(1):2371173.

PMID: 38972297 PMC: 11637001. DOI: 10.1080/13510002.2024.2371173.


References
1.
Lin H, Tseng L . DBCP: a web server for disulfide bonding connectivity pattern prediction without the prior knowledge of the bonding state of cysteines. Nucleic Acids Res. 2010; 38(Web Server issue):W503-7. PMC: 2896133. DOI: 10.1093/nar/gkq514. View

2.
El Hajjaji H, Dumoulin M, Matagne A, Colau D, Roos G, Messens J . The zinc center influences the redox and thermodynamic properties of Escherichia coli thioredoxin 2. J Mol Biol. 2008; 386(1):60-71. DOI: 10.1016/j.jmb.2008.11.046. View

3.
Wood Z, Schroder E, Harris J, Poole L . Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci. 2003; 28(1):32-40. DOI: 10.1016/s0968-0004(02)00003-8. View

4.
Passerini A, Frasconi P . Learning to discriminate between ligand-bound and disulfide-bound cysteines. Protein Eng Des Sel. 2004; 17(4):367-73. DOI: 10.1093/protein/gzh042. View

5.
Roos G, Messens J . Protein sulfenic acid formation: from cellular damage to redox regulation. Free Radic Biol Med. 2011; 51(2):314-26. DOI: 10.1016/j.freeradbiomed.2011.04.031. View