» Articles » PMID: 19339991

ChIP-Seq of ERalpha and RNA Polymerase II Defines Genes Differentially Responding to Ligands

Overview
Journal EMBO J
Date 2009 Apr 3
PMID 19339991
Citations 266
Authors
Affiliations
Soon will be listed here.
Abstract

We used ChIP-Seq to map ERalpha-binding sites and to profile changes in RNA polymerase II (RNAPII) occupancy in MCF-7 cells in response to estradiol (E2), tamoxifen or fulvestrant. We identify 10 205 high confidence ERalpha-binding sites in response to E2 of which 68% contain an estrogen response element (ERE) and only 7% contain a FOXA1 motif. Remarkably, 596 genes change significantly in RNAPII occupancy (59% up and 41% down) already after 1 h of E2 exposure. Although promoter proximal enrichment of RNAPII (PPEP) occurs frequently in MCF-7 cells (17%), it is only observed on a minority of E2-regulated genes (4%). Tamoxifen and fulvestrant partially reduce ERalpha DNA binding and prevent RNAPII loading on the promoter and coding body on E2-upregulated genes. Both ligands act differently on E2-downregulated genes: tamoxifen acts as an agonist thus downregulating these genes, whereas fulvestrant antagonizes E2-induced repression and often increases RNAPII occupancy. Furthermore, our data identify genes preferentially regulated by tamoxifen but not by E2 or fulvestrant. Thus (partial) antagonist loaded ERalpha acts mechanistically different on E2-activated and E2-repressed genes.

Citing Articles

Genome-wide mapping and quantification of DNA damage induced by catechol estrogens using Click-Probe-Seq and LC-MS.

Do Q, Tzeng S, Wang C, Wu C, Kafeenah H, Chen S Commun Biol. 2025; 8(1):357.

PMID: 40069327 PMC: 11897211. DOI: 10.1038/s42003-025-07657-0.


Exploring the Complex Mechanisms of Isoflavones: From Cell Bioavailability, to Cell Dynamics and Breast Cancer.

Ferriere F, Aasi N, Flouriot G, Pakdel F Phytother Res. 2024; 39(2):957-979.

PMID: 39707600 PMC: 11832364. DOI: 10.1002/ptr.8417.


Chromatin endogenous cleavage provides a global view of yeast RNA polymerase II transcription kinetics.

VanBelzen J, Sakelaris B, Brickner D, Marcou N, Riecke H, Mangan N Elife. 2024; 13.

PMID: 39607887 PMC: 11604220. DOI: 10.7554/eLife.100764.


Phase Separation Mediated Sub-Nuclear Compartmentalization of Androgen Receptors.

Yavuz S, Abraham T, Houtsmuller A, van Royen M Cells. 2024; 13(20.

PMID: 39451211 PMC: 11506798. DOI: 10.3390/cells13201693.


Proteomic Analysis Reveals Major Proteins and Pathways That Mediate the Effect of 17-β-Estradiol in Cell Division and Apoptosis in Breast Cancer MCF7 Cells.

Zhou Z, Sicairos B, Zhou J, Du Y J Proteome Res. 2024; 23(11):4835-4848.

PMID: 39392593 PMC: 11536429. DOI: 10.1021/acs.jproteome.4c00102.


References
1.
Lupien M, Eeckhoute J, Meyer C, Wang Q, Zhang Y, Li W . FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell. 2008; 132(6):958-70. PMC: 2323438. DOI: 10.1016/j.cell.2008.01.018. View

2.
Smeenk L, van Heeringen S, Koeppel M, van Driel M, Bartels S, Akkers R . Characterization of genome-wide p53-binding sites upon stress response. Nucleic Acids Res. 2008; 36(11):3639-54. PMC: 2441782. DOI: 10.1093/nar/gkn232. View

3.
Perillo B, Ombra M, Bertoni A, Cuozzo C, Sacchetti S, Sasso A . DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression. Science. 2008; 319(5860):202-6. DOI: 10.1126/science.1147674. View

4.
Lin C, Vega V, Thomsen J, Zhang T, Kong S, Xie M . Whole-genome cartography of estrogen receptor alpha binding sites. PLoS Genet. 2007; 3(6):e87. PMC: 1885282. DOI: 10.1371/journal.pgen.0030087. View

5.
Kininis M, Isaacs G, Core L, Hah N, Kraus W . Postrecruitment regulation of RNA polymerase II directs rapid signaling responses at the promoters of estrogen target genes. Mol Cell Biol. 2008; 29(5):1123-33. PMC: 2643830. DOI: 10.1128/MCB.00841-08. View