» Articles » PMID: 22145096

Uniform Auxin Triggers the Rho GTPase-dependent Formation of Interdigitation Patterns in Pavement Cells

Overview
Journal Small GTPases
Date 2011 Dec 7
PMID 22145096
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

The investigation of Rho-family GTPases has uncovered mechanisms for spatiotemporal control of cellular processes such as cell polarization, movement, morphogenesis and cell division. Now Rho GTPase plays another leading role in the discovery of a new signaling mechanism for auxin, a multifunctional hormone that regulates pattern formation in plants. Arabidopsis leaf epidermal pavement cells (PCs) develop the puzzle-piece cell shape with interlocking lobes and indentations via interdigitated cellular growth.1 Through the ABP1 (Auxin Binding Protein 1) cell surface receptor, auxin coordinately activates 2 mutually exclusive Rho GTPase signaling pathways that are activated in the complementary lobing and indenting sides of adjacent cells: the ROP2 pathway for lobe formation and the ROP6 pathway for promoting indentation. This new signaling mechanism also involves ROP2-dependent polar accumulation of PIN1 in the plasma membrane, a member of the PIN auxin efflux carrier family that is critical for the formation of various developmental patterns including the PC interdigitation pattern. This Rho-dependent auxin signaling mechanism explains how interdigitated cellular growth is coordinated. In this extra view, we propose that the same mechanism can also explain how a uniform auxin signal initiates the formation of the interdigitated pattern.

Citing Articles

Mechano-chemical regulation of complex cell shape formation: Epidermal pavement cells-A case study.

van Spoordonk R, Schneider R, Sampathkumar A Quant Plant Biol. 2023; 4:e5.

PMID: 37251797 PMC: 10225270. DOI: 10.1017/qpb.2023.4.


Auxin and Target of Rapamycin Spatiotemporally Regulate Root Organogenesis.

Xie X, Wang Y, Datla R, Ren M Int J Mol Sci. 2021; 22(21).

PMID: 34768785 PMC: 8583787. DOI: 10.3390/ijms222111357.


Auxin-induced actin cytoskeleton rearrangements require AUX1.

Arieti R, Staiger C New Phytol. 2019; 226(2):441-459.

PMID: 31859367 PMC: 7154765. DOI: 10.1111/nph.16382.


Calcium: The Missing Link in Auxin Action.

Vanneste S, Friml J Plants (Basel). 2016; 2(4):650-75.

PMID: 27137397 PMC: 4844386. DOI: 10.3390/plants2040650.


Pavement cells: a model system for non-transcriptional auxin signalling and crosstalks.

Chen J, Wang F, Zheng S, Xu T, Yang Z J Exp Bot. 2015; 66(16):4957-70.

PMID: 26047974 PMC: 4598803. DOI: 10.1093/jxb/erv266.


References
1.
Thiel G, Blatt M, Fricker M, White I, Millner P . Modulation of K+ channels in Vicia stomatal guard cells by peptide homologs to the auxin-binding protein C terminus. Proc Natl Acad Sci U S A. 1993; 90(24):11493-7. PMC: 48010. DOI: 10.1073/pnas.90.24.11493. View

2.
Hertel R, Thomson K, Russo V . In-vitro auxin binding to particulate cell fractions from corn coleoptiles. Planta. 2014; 107(4):325-40. DOI: 10.1007/BF00386394. View

3.
Chapman E, Estelle M . Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet. 2009; 43:265-85. DOI: 10.1146/annurev-genet-102108-134148. View

4.
Calderon-Villalobos L, Tan X, Zheng N, Estelle M . Auxin perception--structural insights. Cold Spring Harb Perspect Biol. 2010; 2(7):a005546. PMC: 2890193. DOI: 10.1101/cshperspect.a005546. View

5.
Hazak O, Bloch D, Poraty L, Sternberg H, Zhang J, Friml J . A rho scaffold integrates the secretory system with feedback mechanisms in regulation of auxin distribution. PLoS Biol. 2010; 8(1):e1000282. PMC: 2808208. DOI: 10.1371/journal.pbio.1000282. View