» Articles » PMID: 22092279

A Microfabricated Platform to Measure and Manipulate the Mechanics of Engineered Cardiac Microtissues

Abstract

Engineered myocardial tissues can be used to elucidate fundamental features of myocardial biology, develop organotypic in vitro model systems, and as engineered tissue constructs for replacing damaged heart tissue in vivo. However, a key limitation is an inability to test the wide range of parameters (cell source, mechanical, soluble and electrical stimuli) that might impact the engineered tissue in a high-throughput manner and in an environment that mimics native heart tissue. Here we used microelectromechanical systems technology to generate arrays of cardiac microtissues (CMTs) embedded within three-dimensional micropatterned matrices. Microcantilevers simultaneously constrain CMT contraction and report forces generated by the CMTs in real time. We demonstrate the ability to routinely produce ~200 CMTs per million cardiac cells (<1 neonatal rat heart) whose spontaneous contraction frequency, duration, and forces can be tracked. Independently varying the mechanical stiffness of the cantilevers and collagen matrix revealed that both the dynamic force of cardiac contraction as well as the basal static tension within the CMT increased with boundary or matrix rigidity. Cell alignment is, however, reduced within a stiff collagen matrix; therefore, despite producing higher force, CMTs constructed from higher density collagen have a lower cross-sectional stress than those constructed from lower density collagen. We also study the effect of electrical stimulation on cell alignment and force generation within CMTs and we show that the combination of electrical stimulation and auxotonic load strongly improves both the structure and the function of the CMTs. Finally, we demonstrate the suitability of our technique for high-throughput monitoring of drug-induced changes in spontaneous frequency or contractility in CMTs as well as high-speed imaging of calcium dynamics using fluorescent dyes. Together, these results highlight the potential for this approach to quantitatively demonstrate the impact of physical parameters on the maturation, structure, and function of cardiac tissue and open the possibility to use high-throughput, low volume screening for studies on engineered myocardium.

Citing Articles

FORCETRACKER: A versatile tool for standardized assessment of tissue contractile properties in 3D Heart-on-Chip platforms.

Rivera-Arbelaez J, Dostanic M, Windt L, Stein J, Cofino-Fabres C, Boonen T PLoS One. 2025; 20(2):e0314985.

PMID: 39946364 PMC: 11825004. DOI: 10.1371/journal.pone.0314985.


Measuring mechanical stress in living tissues.

Gomez-Gonzalez M, Latorre E, Arroyo M, Trepat X Nat Rev Phys. 2025; 2(6):300-317.

PMID: 39867749 PMC: 7617344. DOI: 10.1038/s42254-020-0184-6.


Microfluidic platforms for monitoring cardiomyocyte electromechanical activity.

Wang W, Su W, Han J, Song W, Li X, Xu C Microsyst Nanoeng. 2025; 11(1):4.

PMID: 39788940 PMC: 11718118. DOI: 10.1038/s41378-024-00751-z.


In Vitro Models of Cardiovascular Disease: Embryoid Bodies, Organoids and Everything in Between.

Stougiannou T, Christodoulou K, Karangelis D Biomedicines. 2025; 12(12.

PMID: 39767621 PMC: 11726960. DOI: 10.3390/biomedicines12122714.


Matrix Architecture and Mechanics Regulate Myofibril Organization, Costamere Assembly, and Contractility in Engineered Myocardial Microtissues.

DePalma S, Jilberto J, Stis A, Huang D, Lo J, Davidson C Adv Sci (Weinh). 2024; 11(47):e2309740.

PMID: 39558513 PMC: 11653763. DOI: 10.1002/advs.202309740.


References
1.
Klotzsch E, Smith M, Kubow K, Muntwyler S, Little W, Beyeler F . Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites. Proc Natl Acad Sci U S A. 2009; 106(43):18267-72. PMC: 2761242. DOI: 10.1073/pnas.0907518106. View

2.
Schubert B, VanDongen A, Kirsch G, Brown A . Inhibition of cardiac Na+ currents by isoproterenol. Am J Physiol. 1990; 258(4 Pt 2):H977-82. DOI: 10.1152/ajpheart.1990.258.4.H977. View

3.
Eschenhagen T, Zimmermann W . Engineering myocardial tissue. Circ Res. 2005; 97(12):1220-31. DOI: 10.1161/01.RES.0000196562.73231.7d. View

4.
Kattman S, Witty A, Gagliardi M, Dubois N, Niapour M, Hotta A . Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell. 2011; 8(2):228-40. DOI: 10.1016/j.stem.2010.12.008. View

5.
Eschenhagen T, Fink C, Remmers U, Scholz H, Wattchow J, Weil J . Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J. 1997; 11(8):683-94. DOI: 10.1096/fasebj.11.8.9240969. View