» Articles » PMID: 22022278

Three Structure-selective Endonucleases Are Essential in the Absence of BLM Helicase in Drosophila

Overview
Journal PLoS Genet
Specialty Genetics
Date 2011 Oct 25
PMID 22022278
Citations 29
Authors
Affiliations
Soon will be listed here.
Abstract

DNA repair mechanisms in mitotically proliferating cells avoid generating crossovers, which can contribute to genome instability. Most models for the production of crossovers involve an intermediate with one or more four-stranded Holliday junctions (HJs), which are resolved into duplex molecules through cleavage by specialized endonucleases. In vitro studies have implicated three nuclear enzymes in HJ resolution: MUS81-EME1/Mms4, GEN1/Yen1, and SLX4-SLX1. The Bloom syndrome helicase, BLM, plays key roles in preventing mitotic crossover, either by blocking the formation of HJ intermediates or by removing HJs without cleavage. Saccharomyces cerevisiae mutants that lack Sgs1 (the BLM ortholog) and either Mus81-Mms4 or Slx4-Slx1 are inviable, but mutants that lack Sgs1 and Yen1 are viable. The current view is that Yen1 serves primarily as a backup to Mus81-Mms4. Previous studies with Drosophila melanogaster showed that, as in yeast, loss of both DmBLM and MUS81 or MUS312 (the ortholog of SLX4) is lethal. We have now recovered and analyzed mutations in Drosophila Gen. As in yeast, there is some redundancy between Gen and mus81; however, in contrast to the case in yeast, GEN plays a more predominant role in responding to DNA damage than MUS81-MMS4. Furthermore, loss of DmBLM and GEN leads to lethality early in development. We present a comparison of phenotypes occurring in double mutants that lack DmBLM and either MUS81, GEN, or MUS312, including chromosome instability and deficiencies in cell proliferation. Our studies of synthetic lethality provide insights into the multiple functions of DmBLM and how various endonucleases may function when DmBLM is absent.

Citing Articles

Exploring the Structures and Functions of Macromolecular SLX4-Nuclease Complexes in Genome Stability.

Payliss B, Patel A, Sheppard A, Wyatt H Front Genet. 2021; 12:784167.

PMID: 34804132 PMC: 8599992. DOI: 10.3389/fgene.2021.784167.


DNA polymerase theta suppresses mitotic crossing over.

Carvajal-Garcia J, Crown K, Ramsden D, Sekelsky J PLoS Genet. 2021; 17(3):e1009267.

PMID: 33750946 PMC: 8016270. DOI: 10.1371/journal.pgen.1009267.


Genomic Instability in Fungal Plant Pathogens.

Covo S Genes (Basel). 2020; 11(4).

PMID: 32295266 PMC: 7230313. DOI: 10.3390/genes11040421.


History of DNA Helicases.

Brosh Jr R, Matson S Genes (Basel). 2020; 11(3).

PMID: 32120966 PMC: 7140857. DOI: 10.3390/genes11030255.


Structure-Specific Endonucleases and the Resolution of Chromosome Underreplication.

Falquet B, Rass U Genes (Basel). 2019; 10(3).

PMID: 30893921 PMC: 6470701. DOI: 10.3390/genes10030232.


References
1.
Laurencon A, Orme C, Peters H, Boulton C, Vladar E, Langley S . A large-scale screen for mutagen-sensitive loci in Drosophila. Genetics. 2004; 167(1):217-31. PMC: 1470880. DOI: 10.1534/genetics.167.1.217. View

2.
Bugreev D, Rossi M, Mazin A . Cooperation of RAD51 and RAD54 in regression of a model replication fork. Nucleic Acids Res. 2010; 39(6):2153-64. PMC: 3064783. DOI: 10.1093/nar/gkq1139. View

3.
Wechsler T, Newman S, West S . Aberrant chromosome morphology in human cells defective for Holliday junction resolution. Nature. 2011; 471(7340):642-6. PMC: 3560329. DOI: 10.1038/nature09790. View

4.
Andersen S, Bergstralh D, Kohl K, LaRocque J, Moore C, Sekelsky J . Drosophila MUS312 and the vertebrate ortholog BTBD12 interact with DNA structure-specific endonucleases in DNA repair and recombination. Mol Cell. 2009; 35(1):128-35. PMC: 2746756. DOI: 10.1016/j.molcel.2009.06.019. View

5.
Constantinou A, Chen X, McGowan C, West S . Holliday junction resolution in human cells: two junction endonucleases with distinct substrate specificities. EMBO J. 2002; 21(20):5577-85. PMC: 129086. DOI: 10.1093/emboj/cdf554. View