» Articles » PMID: 22017870

Structure and Dynamics of the Mammalian Ribosomal Pretranslocation Complex

Overview
Journal Mol Cell
Publisher Cell Press
Specialty Cell Biology
Date 2011 Oct 25
PMID 22017870
Citations 75
Authors
Affiliations
Soon will be listed here.
Abstract

Although the structural core of the ribosome is conserved in all kingdoms of life, eukaryotic ribosomes are significantly larger and more complex than their bacterial counterparts. The extent to which these differences influence the molecular mechanism of translation remains elusive. Multiparticle cryo-electron microscopy and single-molecule FRET investigations of the mammalian pretranslocation complex reveal spontaneous, large-scale conformational changes, including an intersubunit rotation of the ribosomal subunits. Through structurally related processes, tRNA substrates oscillate between classical and at least two distinct hybrid configurations facilitated by localized changes in their L-shaped fold. Hybrid states are favored within the mammalian complex. However, classical tRNA positions can be restored by tRNA binding to the E site or by the eukaryotic-specific antibiotic and translocation inhibitor cycloheximide. These findings reveal critical distinctions in the structural and energetic features of bacterial and mammalian ribosomes, providing a mechanistic basis for divergent translation regulation strategies and species-specific antibiotic action.

Citing Articles

Ribosomal A-site interactions with near-cognate tRNAs drive stop codon readthrough.

capkova Pavlikova Z, Miletinova P, Roithova A, Pospisilova K, Zahonova K, Kachale A Nat Struct Mol Biol. 2025; .

PMID: 39806023 DOI: 10.1038/s41594-024-01450-z.


Transfer RNA acetylation regulates in vivo mammalian stress signaling.

Thalalla Gamage S, Khoogar R, Manage S, Crawford M, Georgeson J, Polevoda B bioRxiv. 2024; .

PMID: 39091849 PMC: 11291155. DOI: 10.1101/2024.07.25.605208.


GNN Codon Adjacency Tunes Protein Translation.

Sun J, Hwang P, Sakkas E, Zhou Y, Perez L, Dave I Int J Mol Sci. 2024; 25(11).

PMID: 38892101 PMC: 11172435. DOI: 10.3390/ijms25115914.


Activity reconstitution of Kre33 and Tan1 reveals a molecular ruler mechanism in eukaryotic tRNA acetylation.

Ma C, Liu N, Li H, Xu H, Zhou X Nucleic Acids Res. 2024; 52(9):5226-5240.

PMID: 38613394 PMC: 11109946. DOI: 10.1093/nar/gkae262.


Fitness Effects of Phenotypic Mutations at Proteome-Scale Reveal Optimality of Translation Machinery.

Landerer C, Poehls J, Toth-Petroczy A Mol Biol Evol. 2024; 41(3).

PMID: 38421032 PMC: 10939442. DOI: 10.1093/molbev/msae048.


References
1.
Spahn C, Beckmann R, Eswar N, Penczek P, Sali A, Blobel G . Structure of the 80S ribosome from Saccharomyces cerevisiae--tRNA-ribosome and subunit-subunit interactions. Cell. 2001; 107(3):373-86. DOI: 10.1016/s0092-8674(01)00539-6. View

2.
Chandramouli P, Topf M, Menetret J, Eswar N, Cannone J, Gutell R . Structure of the mammalian 80S ribosome at 8.7 A resolution. Structure. 2008; 16(4):535-48. PMC: 2775484. DOI: 10.1016/j.str.2008.01.007. View

3.
Korostelev A, Trakhanov S, Laurberg M, Noller H . Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell. 2006; 126(6):1065-77. DOI: 10.1016/j.cell.2006.08.032. View

4.
Pan D, Kirillov S, Cooperman B . Kinetically competent intermediates in the translocation step of protein synthesis. Mol Cell. 2007; 25(4):519-29. PMC: 1995019. DOI: 10.1016/j.molcel.2007.01.014. View

5.
Budkevich T, Elskaya A, Nierhaus K . Features of 80S mammalian ribosome and its subunits. Nucleic Acids Res. 2008; 36(14):4736-44. PMC: 2504317. DOI: 10.1093/nar/gkn424. View