» Articles » PMID: 21985008

Cell Type–specific Channelrhodopsin-2 Transgenic Mice for Optogenetic Dissection of Neural Circuitry Function

Overview
Journal Nat Methods
Date 2011 Oct 11
PMID 21985008
Citations 368
Authors
Affiliations
Soon will be listed here.
Abstract

Optogenetic methods have emerged as powerful tools for dissecting neural circuit connectivity, function and dysfunction. We used a bacterial artificial chromosome (BAC) transgenic strategy to express the H134R variant of channelrhodopsin-2, ChR2(H134R), under the control of cell type–specific promoter elements. We performed an extensive functional characterization of the newly established VGAT-ChR2(H134R)-EYFP, ChAT-ChR2(H134R)-EYFP, Tph2-ChR2(H134R)-EYFP and Pvalb(H134R)-ChR2-EYFP BAC transgenic mouse lines and demonstrate the utility of these lines for precisely controlling action-potential firing of GABAergic, cholinergic, serotonergic and parvalbumin-expressing neuron subsets using blue light. This resource of cell type–specific ChR2(H134R) mouse lines will facilitate the precise mapping of neuronal connectivity and the dissection of the neural basis of behavior.

Citing Articles

Design considerations for optogenetic applications of soft micro-LED-based device systems across diverse nervous systems.

Lee J, Kim T, Cho S, Shin J, Yeo W, Kim T Bioact Mater. 2025; 48:217-241.

PMID: 40046014 PMC: 11880665. DOI: 10.1016/j.bioactmat.2025.02.006.


Wireless Devices for Optical Brain Stimulation: A Review of Current Developments for Optogenetic Applications in Freely Moving Mice.

Silva P, Jacinto L Cell Mol Bioeng. 2025; 18(1):1-13.

PMID: 39949492 PMC: 11813840. DOI: 10.1007/s12195-024-00832-z.


Acute Optogenetic Stimulation of Serotonin Neurons Reduces Cell Proliferation in the Dentate Gyrus of Mice.

Araragi N, Petermann M, Suzuki M, Larkum M, Mosienko V, Bader M ACS Chem Neurosci. 2025; 16(5):781-789.

PMID: 39937171 PMC: 11887043. DOI: 10.1021/acschemneuro.4c00771.


Cerebral blood flow patterns induced by photoactivation based on laser speckle contrast imaging.

Zhu X, Shi L, Li P, Lu J Biomed Opt Express. 2024; 15(12):6739-6755.

PMID: 39679412 PMC: 11640580. DOI: 10.1364/BOE.541444.


Enhanced prefrontal nicotinic signaling as evidence of active compensation in Alzheimer's disease models.

Power S, Venkatesan S, Qu S, McLaurin J, Lambe E Transl Neurodegener. 2024; 13(1):58.

PMID: 39623428 PMC: 11613856. DOI: 10.1186/s40035-024-00452-7.


References
1.
Qin C, Luo M . Neurochemical phenotypes of the afferent and efferent projections of the mouse medial habenula. Neuroscience. 2009; 161(3):827-37. DOI: 10.1016/j.neuroscience.2009.03.085. View

2.
Brahma B, Forman R, Stewart E, Nicholson C, Rice M . Ascorbate inhibits edema in brain slices. J Neurochem. 2000; 74(3):1263-70. DOI: 10.1046/j.1471-4159.2000.741263.x. View

3.
Gradinaru V, Thompson K, Zhang F, Mogri M, Kay K, Schneider M . Targeting and readout strategies for fast optical neural control in vitro and in vivo. J Neurosci. 2007; 27(52):14231-8. PMC: 6673457. DOI: 10.1523/JNEUROSCI.3578-07.2007. View

4.
Kravitz A, Freeze B, Parker P, Kay K, Thwin M, Deisseroth K . Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature. 2010; 466(7306):622-6. PMC: 3552484. DOI: 10.1038/nature09159. View

5.
Cruikshank S, Urabe H, Nurmikko A, Connors B . Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons. Neuron. 2010; 65(2):230-45. PMC: 2826223. DOI: 10.1016/j.neuron.2009.12.025. View